Sonochemical degradation of dilute aqueous solutions of 2-, 3- and 4-chlorophenol and pentachlorophenol has been investigated under air or argon atmosphere. The degradation follows first-order kinetics in the initial state with rates in the range 4.5-6.6 microM min-1 under air and 6.0-7.2 microM min-1 under argon at a concentration of 100 microM of chlorophenols. The rate of OH radical formation from water is 19.8 microM min-1 under argon and 14.7 microM min-1 under air in the same sonolysis conditions. The sonolysis of chlorophenols is effectively inhibited, but not completely, by the addition of t-BuOH, which is known to be an efficient OH radical scavenger in aqueous sonolysis. This suggests that the main degradation of chlorophenols proceeds via reaction with OH radicals; a thermal reaction also occurs, although its contribution is small. The addition of appropriate amounts of Fe(II) ions accelerates the degradation. This is probably due to the regeneration of OH radicals from hydrogen peroxide, which would be formed from recombination of OH radicals and which may contribute a little to the degradation. The ability to inhibit bacterial multiplication of pentachlorophenol decreases with ultrasonic irradiation.
We investigated the effect of VD3 (1α,25-dihydroxyvitamin D3) on the proliferating, differentiating and differentiated phases of C2C12 myoblasts, a mouse skeletal muscle cell line. VD3 treatment in 10% FBS (fetal bovine serum) inhibited the proliferation and viability of the cells in a dose-dependent manner. It also dose-dependently increased the percentage of cells in the G0/G1 phase as shown by flow cytometry. In the differentiating phase, VD3 treatment inhibited the formation of myotubes and the expression of total myosin heavy chain at both the mRNA and protein levels. In the differentiated phase, treatment had no significant effect on the amount of total myosin heavy chain, as Western blot analysis with MF20 antibody [DSHB (Developmental Studies Hybridoma Bank)] showed. However, significantly greater expression of fast myosin heavy chain in 1 nM VD3 was found by Western blot analysis with MY-32 (Sigma). Thus VD3 inhibited the proliferation of myoblasts during proliferating and differentiating phases, whereas it increased the expression of the fast myosin heavy chain isoform in the differentiated phase. The data indicate that an adequate concentration of VD3 might have an anabolic effect on differentiated skeletal muscle.
Sonochemical reduction processes of Pt(IV) ions in water have been investigated in the presence of various kinds of surfactants such as sodium dodecylsulfate (SDS) and sodium dodecylbenzenesulfonate (DBS) as anionic surfactants, and polyethylene glycol monostearate (PEG-MS) as non-ionic, dodecyltrimethylammonium chloride (DTAC) and bromide (DTAB) as cationic surfactants. An improved colorimetric determination reveals that Pt(IV) ion is reduced to zero valent metal in two steps: step (1)--Pt(IV) ion to Pt(II) ion, and step (2)--Pt(II) ion to Pt(0), and after the completion of step (1), step (2) sets in. It appears that rapid scrambling reactions among platinum ions and/or atoms, that is, Pt(I) + Pt(IV)-->Pt(II) + Pt(III), etc. take place. In the sonolysis of aqueous solutions of SDS, DBS or PEG-MS, two kinds of organic reducing radicals, R(ab) and R(py), are proposed to contribute to the reduction. Radical R(ab) is formed from the reaction of the surfactants with primary radicals such as hydroxyl radicals and hydrogen atoms originated from the sonolysis of water, and radical R(py) is formed from the direct thermal decomposition of surfactants in the interfacial region between the collapsing cavities and the bulk water. R(ab) is effective for both the reduction steps, whereas R(py) is involved only in the reduction step (1). This fact coincides with the previous reported sonochemical reduction of Pt(II) ions. Hydrogen atoms themselves scarcely participate in the reduction. The average diameter (1.0 nm) of platinum particles prepared from the system of PEG-MS is smaller than those from the aqueous solution of anionic surfactant SDS (3.0 nm) and DBS (3.0 nm).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.