Animal navigation requires multiple types of information for decisions on directional heading. We identified neural processing channels that encode multiple cues during navigational decision-making in Drosophila melanogaster. In a flight simulator, we found that flies made directional choices on the basis of the location of a recently presented landmark. This experience-guided navigation was impaired by silencing neurons in the bulb (BU), a region in the central brain. Two-photon calcium imaging during flight revealed that the dorsal part of the BU encodes the location of a recent landmark, whereas the ventral part of the BU tracks self-motion reflecting turns. Photolabeling-based circuit tracing indicated that these functional compartments of the BU constitute adjacent, yet distinct, anatomical pathways that both enter the navigation center. Thus, the fly's navigation system organizes multiple types of information in parallel channels, which may compactly transmit signals without interference for decision-making during flight.
Primates are capable of discriminating depth with remarkable precision using binocular disparity. Neurons in area V4 are selective for relative disparity, which is the crucial visual cue for discrimination of fine disparity. Here, we investigated the contribution of V4 neurons to fine disparity discrimination. Monkeys discriminated whether the center disk of a dynamic random-dot stereogram was in front of or behind its surrounding annulus. We first behaviorally tested the reference frame of the disparity representation used for performing this task. After learning the task with a set of surround disparities, the monkey generalized its responses to untrained surround disparities, indicating that the perceptual decisions were generated from a disparity representation in a relative frame of reference. We then recorded single-unit responses from V4 while the monkeys performed the task. On average, neuronal thresholds were higher than the behavioral thresholds. The most sensitive neurons reached thresholds as low as the psychophysical thresholds. For subthreshold disparities, the monkeys made frequent errors. The variable decisions were predictable from the fluctuation in the neuronal responses. The predictions were based on a decision model in which each V4 neuron transmits the evidence for the disparity it prefers. We finally altered the disparity representation artificially by means of microstimulation to V4. The decisions were systematically biased when microstimulation boosted the V4 responses. The bias was toward the direction predicted from the decision model. We suggest that disparity signals carried by V4 neurons underlie precise discrimination of fine stereoscopic depth.
Rat liver contains a high concentration (7-8mM) of reduced glutathione and its level changes rapidly when starving or feeding rats. We concluded that one of the functions of liver glutathione was to act as a reservoir of cysteine. When starved rats were fed a protein-free diet, the increase in liver glutathione was dependent on the amount of cysteine added to the diet. A cysteine-dependent increase of glutathione was also observed in rats fed a diet containing gelatin with cysteine, but the increase was relatively lowered compared with rats fed a protein-free diet containing the same amount of cysteine. This suppression of the increase in glutathione was observed much more clearly when the gelatin diet was fortified with tryptophan in addition to cysteine. In the presence of tryptophan, L-[35S]-cysteine in the diet appeared to be incorporated primarily into liver and serum proteins, and degradation of liver glutathione must also have been enhanced. Addition of excess cysteine to the diet masked the effects of gelatin and tryptophan, stimulated glutathione synthesis in the liver as well as incorporation of dietary cysteine into protein fractions. Prolonged starvation of rats or injection of dibutyryl-3',5'-cyclic AMP lowered the glutathione level,but the level did not decrease below 2 to 3 mM. These findings suggest that there may be at least two pools of glutathione. A labile fraction, constituting one-third to one-half the total liver glutathione, probably serves as a reservoir of cysteine which can be released by gamma-glutamyl-transferase when necessary.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.