Class 3 semaphorins are known to repel and/or sometimes attract axons; however, their role in guiding developing axons in the CNS in vivo is still essentially unknown. We investigated the role of Semaphorin3D (Sema3D) in the formation of the early axon pathways in the zebrafish CNS. Morpholino knock-down shows that Sema3D is essential for the correct formation of two early axon pathways. Sema3D appears to guide axons of the nucleus of the medial longitudinal fasciculus (nucMLF) by repulsion and modulation of fasciculation. In contrast, Sema3D appears to be attractive to telencephalic neurons that form the anterior commissure (AC). Knock-down of Neuropilin-1A (Npn-1A) phenocopied the effects of Sema3D knock-down on the nucMLF axons, and knock-down of either Npn-1A or Npn-2B phenocopied the defects of the AC. Furthermore, simultaneous partial knock-down experiments demonstrated genetic interactions among Sema3D, Npn-1A, and Npn-2B. Together, these data support the hypothesis that Sema3D may act as a repellent through receptors containing Npn-1A and as an attractant via receptors containing Npn-1A and Npn-2B.
Hippocampal mossy fibers project preferentially to the proximal-most lamina of the suprapyramidal region of CA3, the stratum lucidum, and proximal-most parts of the infrapyrmidal region of CA3c. Molecular mechanisms that govern the lamina-restricted projection of mossy fibers, however, have not been fully understood. We previously studied functions of neural repellent Semaphorin-6A (Sema6A), a class 6 transmembrane semaphorin, and its receptors, plexin-A2 (PlxnA2) and PlxnA4, in mossy fiber projection and have proposed that PlxnA4-expressing mossy fibers are principally prevented from entering the Sema6A-expressing suprapyramidal and infrapyramidal regions of CA3 but are permitted to grow into proximal parts of the regions, where repulsive activity of Sema6A is competitively suppressed by PlxnA2 (Suto et al., 2007). In the present study we demonstrate that Sema6B, another class 6 transmembrane semaphorin, is expressed in CA3 and repels mossy fibers in a PlxnA4-dependent manner in vitro. In Sema6B-deficient mice several mossy fibers aberrantly project to the stratum radiatum and the stratum oriens. The number of aberrant mossy fibers is increased in Sema6A;Sema6B double knock-out mice, indicating that Sema6A and Sema6B function additively to regulate proper projection of mossy fibers. PlxnA2 does not suppress the Sema6B response, but itself promotes growth of mossy fibers. Based on these results, we propose that the balance between mossy fiber repulsion by Sema6A and Sema6B and attraction by PlxnA2 and unknown molecule(s) prescribes the areas permissive for mossy fibers to innervate.
We found that hesperidin, a plant-derived bioflavonoid, may be a candidate agent for neuroprotective treatment in the retina, after screening 41 materials for anti-oxidative properties in a primary retinal cell culture under oxidative stress. We found that the intravitreal injection of hesperidin in mice prevented reductions in markers of the retinal ganglion cells (RGCs) and RGC death after N-methyl-D-aspartate (NMDA)-induced excitotoxicity. Hesperidin treatment also reduced calpain activation, reactive oxygen species generation and TNF-α gene expression. Finally, hesperidin treatment improved electrophysiological function, measured with visual evoked potential, and visual function, measured with optomotry. Thus, we found that hesperidin suppressed a number of cytotoxic factors associated with NMDA-induced cell death signaling, such as oxidative stress, over-activation of calpain, and inflammation, thereby protecting the RGCs in mice. Therefore, hesperidin may have potential as a therapeutic supplement for protecting the retina against the damage associated with excitotoxic injury, such as occurs in glaucoma and diabetic retinopathy.
In order for axons to reach their proper targets, both spatiotemporal regulation of guidance molecules and stepwise control of growth cone sensitivity to guidance molecules is required. Here, we show that, in zebrafish, Sema3a1, a secreted class 3 semaphorin, plays an essential role in guiding the caudal primary (CaP) motor axon that pioneers the initial region of the motor pathway. The expression pattern of Sema3a1 suggests that it delimits the pioneer CaP axons to the initial, common pathway via a repulsive action, but then CaP axons become insensitive to Sema3a1 beyond the common pathway. Indeed, nrp1a, which probably encodes a component of the Sema3a1 receptor, is specifically expressed by CaP during the early part of its outgrowth but not during later stages when extending into sema3a1-expressing muscle cells. To examine this hypothesis directly, expression of sema3a1 and/or nrp1a was manipulated in several ways. First, antisense knockdown of Sema3a1 induced CaP axons to branch excessively, stall and/or follow aberrant pathways. Furthermore, dynamic analysis showed they extended more lateral filopodia and often failed to pause at the horizontal myoseptal choice point. Second, antisense knockdown of Nrp1a and double knockdown of Nrp1a/Sema3a1 induced similar outgrowth defects in CaP. Third, CaP axons were inhibited by focally misexpressed sema3a1 along the initial common pathway but not along their pathway beyond the common pathway. Thus, as predicted, Sema3a1 is repulsive to CaP axons in the common region of the pathway, but not beyond the common pathway. Fourth, induced ubiquitous overexpression of sema3a1 caused the CaP axons but not the other primary motor axons to follow aberrant pathways. These results suggest that the repulsive response to Sema3a1 of the primary motor axons along the common pathway is both cell-type specific and dynamically regulated, perhaps via regulation of nrp1a.
We investigate the metabolomic profile of reactive persulfides and polysulfides in the aqueous and vitreous humors. Eighteen eyes of 18 consecutive patients with diabetes mellitus (DM) and diabetic retinopathy underwent microincision vitrectomy combined with cataract surgery. Samples of the aqueous and vitreous humors were collected and underwent mass spectrometry-based metabolomic profiling of reactive persulfides and polysulfides (polysulfidomics). The effect of reactive polysulfide species on the viability of immortalized retinal cells (the RGC-5 cell line) under oxidative stress (induced with H2O2) was also evaluated with an Alamar Blue assay. The experiments showed that cysteine persulfides (CysSSH), oxidized glutathione trisulfide (GSSSG) and cystine were elevated in the aqueous humor, and CysSSH, Cys, and cystine were elevated in the vitreous. Furthermore, GSSSG, cystine, and CysSSH levels were correlated in the aqueous and vitreous humors. A comparison, in DM and control subjects, of plasma levels of reactive persulfides and polysulfides showed that they did not differ. In vitro findings revealed that reactive polysulfide species increased cell viability under oxidative stress. Thus, various reactive persulfides and polysulfides appear to be present in the eye, and some reactive sulfide species, which have a protective effect against oxidative stress, are upregulated in the aqueous and vitreous humors of DM eyes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.