Various LV functional parameters were measured with multi-detector row CT with a segmental approach, and measurements correlated and agreed with those obtained with MR imaging. Moreover, functional analysis with multi-detector row CT was more accurate than that with two-dimensional echocardiography or ECG-gated SPECT.
To evaluate changes in cerebral hemodynamics and metabolism induced by acetazolamide in healthy subjects, positron emission tomography studies for measurement of cerebral perfusion and oxygen consumption were performed. Sixteen healthy volunteers underwent positron emission tomography studies with 15O-gas and water before and after intravenous administration of acetazolamide. Dynamic positron emission tomography data were acquired after bolus injection of H2[15O] and bolus inhalation of 15O2. Cerebral blood flow, metabolic rate of oxygen, and arterial-to-capillary blood volume images were calculated using the three-weighted integral method. The images of cerebral blood volume were calculated using the bolus inhalation technique of C[15O]. The scans for cerebral blood flow and volume and metabolic rate of oxygen after acetazolamide challenge were performed at 10, 20, and 30 minutes after drug injection. The parametric images obtained under the two conditions at baseline and after acetazolamide administration were compared. The global and regional values for cerebral blood flow and volume and arterial-to-capillary blood volume increased significantly after acetazolamide administration compared with the baseline condition, whereas no difference in metabolic rate of oxygen was observed. Acetazolamide-induced increases in both blood flow and volume in the normal brain occurred as a vasodilatory reaction of functioning vessels. The increase in arterial-to-capillary blood volume made the major contribution to the cerebral blood volume increase, indicating that the raise in cerebral blood flow during the acetazolamide challenge is closely related to arterial-to-capillary vasomotor responsiveness.
To evaluate a new simplified bolus method for measurement of cerebral perfusion and metabolism, the parametric images with that method were compared with those obtained from the conventional steady-state method with 15O-gas. The new method also provided images of arterial blood volume (V0), which is a different parameter from cerebral blood volume (CBV) obtained using a C15O technique. Seven healthy volunteers and 10 patients with occlusive cerebrovascular diseases underwent positron emission tomography (PET) scans with both methods. Three-weighted integration was applied to calculate regional cerebral blood flow (rCBF) and regional cerebral metabolic rate of oxygen (rCMRO2) in the bolus method. Global and regional CBF and CMRO2 in volunteers were compared between the two methods and used as control data. Regional values in patients also were evaluated to observe differences between the bilateral hemispheres. Both rCBF and rCMRO2 were linearly well correlated between the two methods, although global difference in CMRO2 was significant. The difference in each parametric image except for V0 was significant between the bilateral hemispheres in patients. The bolus method can simplify oxygen metabolism studies and yield parametric images comparable with those with the steady-state method, and can allow for evaluation of V0 simultaneously. Increase in CBV without a change in V0 suggested the increase might mainly be caused by venous dilatation in the ischemic regions.
To elucidate cortical correlates of vestibulo-ocular reflex (VOR) modulation, we observed cortical activation during fixation suppression and habituation of caloric vestibular nystagmus in 12 normal subjects, using PET. Significant positive correlation between regional cerebral blood flow (rCBF) and slow phase eye velocity of caloric nystagmus was observed in the middle and posterior insula, inferior parietal lobule, temporal pole, right fusiform gyrus, lingual gyrus, and cerebellar vermis and hemisphere. The rCBF increase in the insular region and the inferior parietal lobule was lateralized depending on the direction of the nystagmus. Caloric nystagmus was suppressed as a result of visual fixation, during which time the area around the right frontal eye field, temporal pole, inferior temporal gyrus, a broad area in the visual cortex, including fusiform and lingual gyrus, cerebellar uvula/nodulus and flocculus, exhibited positive correlation with fixation suppression of caloric nystagmus, while vestibular cortices exhibited negative correlation. The caloric nystagmus habituated with repetition of stimulation. With habituation, we observed activation in the right anterior cingulate gyrus, left superior parietal lobule and right cuneus, and deactivation in the anterior insula, cingulate gyrus, inferior parietal lobule and occipito-temporal visual cortex. The region that showed significant co-activation with fixation suppression and habituation of caloric nystagmus was the right cuneus, and significant co-deactivation was observed in the anterior insula, cingulate gyrus, inferior parietal lobule and middle temporal visual cortex. The present results support previous observations that the parieto-insular cortex and inferior parietal lobule are involved in processing of vestibular information, and, in addition, suggest that activation may depend on the direction of nystagmus. Deactivation of vestibular cortices during visual fixation supports the concept of inhibitory visual-vestibular interaction in the cortex. Significant activation of the cingulate, superior parietal and visual cortices, and cerebellar vermis accompanying reduction of caloric response with repeated stimuli suggests possible involvement of these regions in vestibular habituation. Common activation of the cuneus in visual cortex and deactivation of vestibular and visuo-spatial association cortices by both visual suppression and habituation of VOR suggests that these two mechanisms are not completely independent but may share some cortical and subcortical regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.