Combinatorial interaction testing, which is a technique to verify a system with numerous input parameters, employs a mathematical object called a covering array as a test input. This technique generates a limited number of test cases while guaranteeing a given combinatorial coverage. Although this area has been studied extensively, handling constraints among input parameters remains a major challenge, which may significantly increase the cost to generate covering arrays. In this work, we propose a mathematical operation, called “weaken-product based combinatorial join”, which constructs a new covering array from two existing covering arrays. The operation reuses existing covering arrays to save computational resource by increasing parallelism during generation without losing combinatorial coverage of the original arrays. Our proposed method significantly reduce the covering array generation time by 13–96% depending on use case scenarios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.