Inactivation of constitutive autophagy results in formation of cytoplasmic protein inclusions and leads to liver injury and neurodegeneration, but the details of abnormalities related to impaired autophagy are largely unknown. Here we used mouse genetic analyses to define the roles of autophagy in the aforementioned events. We report that the ubiquitin- and LC3-binding protein "p62" regulates the formation of protein aggregates and is removed by autophagy. Thus, genetic ablation of p62 suppressed the appearance of ubiquitin-positive protein aggregates in hepatocytes and neurons, indicating that p62 plays an important role in inclusion body formation. Moreover, loss of p62 markedly attenuated liver injury caused by autophagy deficiency, whereas it had little effect on neuronal degeneration. Our findings highlight the unexpected role of homeostatic level of p62, which is regulated by autophagy, in controlling intracellular inclusion body formation, and indicate that the pathologic process associated with autophagic deficiency is cell-type specific.
Statins inhibit 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, which catalyzes conversion of HMG-CoA to mevalonate, a rate-limiting step in cholesterol synthesis. The present study was undertaken to understand the events of osteoblast differentiation induced by statins. Simvastatin at 10(-7) M markedly increased mRNA expression for bone morphogenetic protein-2 (BMP-2), vascular endothelial growth factor (VEGF), alkaline phosphatase, type I collagen, bone sialoprotein, and osteocalcin (OCN) in nontransformed osteoblastic cells (MC3T3-E1), while suppressing gene expression for collagenase-1, and collagenase-3. Extracellular accumulation of proteins such as VEGF, OCN, collagenase-digestive proteins, and noncollagenous proteins was increased in the cells treated with 10(-7) M simvastatin, or 10(-8) M cerivastatin. In the culture of MC3T3-E1 cells, statins stimulated mineralization; pretreating MC3T3-E1 cells with mevalonate, or geranylgeranyl pyrophosphate (a mevalonate metabolite) abolished statin-induced mineralization. Statins stimulate osteoblast differentiation in vitro, and may hold promise drugs for the treatment of osteoporosis in the future.
Circulating adiponectin concentrations are reduced in obese individuals, and this reduction has been proposed to have a crucial role in the pathogenesis of atherosclerosis and cardiovascular diseases associated with obesity and the metabolic syndrome. We focus on the effects of adiponectin on glucose and lipid metabolism and on the molecular anti-atherosclerotic properties of adiponectin and also discuss the factors that increase the circulating levels of adiponectin. Adiponectin reduces inflammatory cytokines and oxidative stress, which leads to an improvement of insulin resistance. Adiponectin-induced improvement of insulin resistance and adiponectin itself reduce hepatic glucose production and increase the utilization of glucose and fatty acids by skeletal muscles, lowering blood glucose levels. Adiponectin has also β cell protective effects and may prevent the development of diabetes. Adiponectin concentration has been found to be correlated with lipoprotein metabolism; especially, it is associated with the metabolism of high-density lipoprotein (HDL) and triglyceride (TG). Adiponectin appears to increase HDL and decrease TG. Adiponectin increases ATP-binding cassette transporter A1 and lipoprotein lipase (LPL) and decreases hepatic lipase, which may elevate HDL. Increased LPL mass/activity and very low density lipoprotein (VLDL) receptor and reduced apo-CIII may increase VLDL catabolism and result in the reduction of serum TG. Further, adiponectin has various molecular anti-atherosclerotic properties, such as reduction of scavenger receptors in macrophages and increase of cholesterol efflux. These findings suggest that high levels of circulating adiponectin can protect against atherosclerosis. Weight loss, exercise, nutritional factors, anti-diabetic drugs, lipid-lowering drugs, and anti-hypertensive drugs have been associated with an increase of serum adiponectin level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.