This study aimed to validate the single-phase and two-phase smoothed particle hydrodynamics (SPH) on sloshing in a tank. There have been many studies on sloshing in tanks based on meshless particle methods, but few researchers have used a large number of particles because there is a limitation on the total number of particles when using only CPUs. Additionally, few studies have investigated the influence of air phase on tank sloshing based on two-phase SPH. In this study, a dedicated sloshing experiment was conducted at the National Research Institute of Fishing Engineering using a prismatic tank with a four-degrees-of-freedom forced oscillation machine. Three pressure gauges were used to measure local pressure near the corners of the tank. The sloshing experiment was repeated for two different filling ratios, amplitudes, and frequencies of external oscillation. Next, a GPU-accelerated three-dimensional SPH simulation of sloshing was performed using the same conditions as the experiment with a large number of particles. Lastly, two-dimensional sloshing simulations based on single-phase and two-phase SPH were carried out to determine the importance of the air phase in terms of tank sloshing. Based on systematic comparisons of the single-phase SPH, two-phase SPH, and experimental results, this paper presents a detailed discussion of the role of air-phase in terms of sloshing. The currently achievable accuracy when using SPH is demonstrated together with a few sensitivity analyses of SPH parameters.
This paper is aimed to validate smoothed particle hydrodynamics (SPH) on the generation and propagation of water waves. It is a classical problem in marine engineering but a still important problem because there is a strong demand to generate intended nonlinear water waves and to predict complicated interactions between nonlinear water waves and fixed/floating bodies, which is indispensable for further ocean utilization and development. A dedicated experiment was conducted in a large wave basin of Kobe University equipped with a piston-type wavemaker, at three water depths using several amplitudes and periods of piston motion for the validation of SPH mainly on the long-distance propagation of water waves. An SPH-based two-dimensional numerical wave tank (NWT) is used for numerical simulation and is accelerated by a graphics processing units (GPU), assuming future applications to realistic engineering problems. In addition, comparison of large-deformation of shallow water waves, when passing over a fixed box-shape obstacle, is also investigated to discuss the applicability to wave-structure interaction problems. Finally, an SPH-based three-dimensional NWT is also validated by comparing with an experiment and two-dimensional simulation. Through these validation studies, detailed discussion on the accuracy of SPH simulation of water waves is made as well as providing a recommended set of SPH parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.