MotivationThe analysis of RNA-Seq data from individual differentiating cells enables us to reconstruct the differentiation process and the degree of differentiation (in pseudo-time) of each cell. Such analyses can reveal detailed expression dynamics and functional relationships for differentiation. To further elucidate differentiation processes, more insight into gene regulatory networks is required. The pseudo-time can be regarded as time information and, therefore, single-cell RNA-Seq data are time-course data with high time resolution. Although time-course data are useful for inferring networks, conventional inference algorithms for such data suffer from high time complexity when the number of samples and genes is large. Therefore, a novel algorithm is necessary to infer networks from single-cell RNA-Seq during differentiation.ResultsIn this study, we developed the novel and efficient algorithm SCODE to infer regulatory networks, based on ordinary differential equations. We applied SCODE to three single-cell RNA-Seq datasets and confirmed that SCODE can reconstruct observed expression dynamics. We evaluated SCODE by comparing its inferred networks with use of a DNaseI-footprint based network. The performance of SCODE was best for two of the datasets and nearly best for the remaining dataset. We also compared the runtimes and showed that the runtimes for SCODE are significantly shorter than for alternatives. Thus, our algorithm provides a promising approach for further single-cell differentiation analyses.Availability and ImplementationThe R source code of SCODE is available at https://github.com/hmatsu1226/SCODESupplementary information Supplementary data are available at Bioinformatics online.
The analysis of RNA-Seq data from individual differentiating cells enables us to reconstruct the differentiation process and the degree of differentiation (in pseudo-time) of each cell. Such analyses can reveal detailed expression dynamics and functional relationships for differentiation. To further elucidate differentiation processes, more insight into gene regulatory networks is required. The pseudo-time can be regarded as time information and, therefore, single-cell RNA-Seq data are time-course data with high time resolution. Although timecourse data are useful for inferring networks, conventional inference algorithms for such data suffer from high time complexity when the number of samples and genes is large. Therefore, a novel algorithm is necessary to infer networks from single-cell RNA-Seq during differentiation. In this study, we developed the novel and efficient algorithm SCODE to infer regulatory networks, based on ordinary differential equations. We applied SCODE to three single-cell RNA-Seq datasets and confirmed that SCODE can reconstruct observed expression dynamics. We evaluated SCODE by comparing its inferred networks with use of a DNaseI-footprint based network. The performance of SCODE was best for two of the datasets and nearly best for the remaining dataset. We also compared the runtimes and showed that the runtimes for SCODE are significantly shorter than for alternatives. Thus, our algorithm provides a promising approach for further single-cell differentiation analyses. The R source code of SCODE is available at https://github.com/
BackgroundSingle-cell technologies make it possible to quantify the comprehensive states of individual cells, and have the power to shed light on cellular differentiation in particular. Although several methods have been developed to fully analyze the single-cell expression data, there is still room for improvement in the analysis of differentiation.ResultsIn this paper, we propose a novel method SCOUP to elucidate differentiation process. Unlike previous dimension reduction-based approaches, SCOUP describes the dynamics of gene expression throughout differentiation directly, including the degree of differentiation of a cell (in pseudo-time) and cell fate. SCOUP is superior to previous methods with respect to pseudo-time estimation, especially for single-cell RNA-seq. SCOUP also successfully estimates cell lineage more accurately than previous method, especially for cells at an early stage of bifurcation. In addition, SCOUP can be applied to various downstream analyses. As an example, we propose a novel correlation calculation method for elucidating regulatory relationships among genes. We apply this method to a single-cell RNA-seq data and detect a candidate of key regulator for differentiation and clusters in a correlation network which are not detected with conventional correlation analysis.ConclusionsWe develop a stochastic process-based method SCOUP to analyze single-cell expression data throughout differentiation. SCOUP can estimate pseudo-time and cell lineage more accurately than previous methods. We also propose a novel correlation calculation method based on SCOUP. SCOUP is a promising approach for further single-cell analysis and available at https://github.com/hmatsu1226/SCOUP.Electronic supplementary materialThe online version of this article (doi:10.1186/s12859-016-1109-3) contains supplementary material, which is available to authorized users.
BackgroundHaplotype information is useful for various genetic analyses, including genome-wide association studies. Determining haplotypes experimentally is difficult and there are several computational approaches that infer haplotypes from genomic data. Among such approaches, single individual haplotyping or haplotype assembly, which infers two haplotypes of an individual from aligned sequence fragments, has been attracting considerable attention. To avoid incorrect results in downstream analyses, it is important not only to assemble haplotypes as long as possible but also to provide means to extract highly reliable haplotype regions. Although there are several efficient algorithms for solving haplotype assembly, there are no efficient method that allow for extracting the regions assembled with high confidence.ResultsWe develop a probabilistic model, called MixSIH, for solving the haplotype assembly problem. The model has two mixture components representing two haplotypes. Based on the optimized model, a quality score is defined, which we call the 'minimum connectivity' (MC) score, for each segment in the haplotype assembly. Because existing accuracy measures for haplotype assembly are designed to compare the efficiency between the algorithms and are not suitable for evaluating the quality of the set of partially assembled haplotype segments, we develop an accuracy measure based on the pairwise consistency and evaluate the accuracy on the simulation and real data. By using the MC scores, our algorithm can extract highly accurate haplotype segments. We also show evidence that an existing experimental dataset contains chimeric read fragments derived from different haplotypes, which significantly degrade the quality of assembled haplotypes.ConclusionsWe develop a novel method for solving the haplotype assembly problem. We also define the quality score which is based on our model and indicates the accuracy of the haplotypes segments. In our evaluation, MixSIH has successfully extracted reliable haplotype segments. The C++ source code of MixSIH is available at https://sites.google.com/site/hmatsu1226/software/mixsih.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.