The curing reactions of epoxy resin with aliphatic diamines and the reaction of phenyl glycidyl ether with butylamine as a model for the curing reactions were investigated with a differential scanning calorimeter (DSC) operated isothermally. The heat of reaction of phenyl glycidyl ether with butylamine is equal to 24.5 ± 0.6 kcal/mole. The rate of reaction was followed over the whole range of conversion for both model and curing reactions. The reactions are accelerated by the hydrogen‐bond donor produced in the system. The rate constants based on the third‐order kinetics were determined and discussed for the model reaction and for the chemically controlled region of curing reactions. The activation energies for these rate constants are 13‐14 kcal/mole. At a later stage of conversion, the curing reactions become controlled by diffusion of functional groups. The final extent of conversion is short of completion for most isothermally cured and even for postcured samples because of crosslinking. It was quantitatively indicated that the final conversion of isothermal cure corresponds to the transition of the system from a viscous liquid to a glass on the basis of the theory of glass transition temperature of crosslinked polymer systems.
The rate of bulk polymerization of methyl methacrylate and styrene was determined directly, continuously and over the whole range of conversion with a differential scanning calorimeter (DSC) operated isothermally. At the later stages of the accelerated polymerization of methyl methacrylate, a previously unknown inflection or peak in the rate of polymerization was observed. The variation of the rate after the onset of the gel effect, including this peculiar inflection, was interpreted on the basis of the diffusion behavior of monomer molecules and polymeric radicals in the polymer–monomer system, their diffusion rates being predicted from the free volume theory. The final conversion at which no further polymerization proceeds was determined for both monomers. It was affirmed quantitatively that the final conversion has a close relation with the transition of the polymer–monomer system from a viscous liquid to a glassy state.
synopsisThe curing reaction of polyester fumarate with styrene was investigated with a differential scanning calorimeter (DSC) operated isothermally. The change in rate of cure was followed over the whole range of conversion. The rate of cure is accelerated by the gel effect to about ten to fifty times the rate of model copolymerization of diethyl fumarate with styrene. This autoacceleration is much enhanced for systems with. higher crosslinking densities and a t lower temperatures. The results confirm that both termination and propagation steps of the curing reaction are controlled by diffusion of polymeric segments and monomer molecules over almost the whole range of conversion. The final extent of conversion is short of completion for isothermal cure and even for postcure of polyester fumarate with styrene because of crosslink formation. The final conversion of isothermal cure decreases with increasing crosslinking density and shows a maximum with increasing reaction temperature. This temperature dependency of the final conversion is caused by the difference in the activation energies for two propagation rate constants k,! and k,,, which were evaluated to be 7-10 and 5-8 kcal/mole, respectively, for the intermediate stage of the curing reaction.
Molecular aggregation in a commercial polyimide film, Du Pont Kapton, was investigated by small‐angle x‐ray scattering (SAXS). From the analysis of the desmeared SAXS curve, it is concluded that aggregation in the Kapton film can be elucidated in terms of a two‐phase structure having electron density fluctuations within the phases. For comparison with the molecular aggregation in Kapton, molecular aggregation in polyimides synthesized in our laboratory was also investigated. It was found in this case that molecular aggregation is controlled by the initial imidization temperature. Molecular aggregation of polyamic acid and polyimide cyclized at a low temperature gives amorphous structures. On the other hand, molecular aggregation of polyimide cyclized at high temperatures gives two‐phase structures like that of Kapton film. The SAXS curve for a polyimide having the two‐phase structure shows a peak due to interference between ordered regions. The two‐phase structure of the polyimide can be explained in terms of a one‐dimensional model. The more ordered phase is produced at the higher initial imidization temperature. The relative density difference between two phases is only a few percent for polyimide films cyclized at high temperatures. This result shows that the two‐phase structure of aromatic polyimide differs essentially from that of ordinary crystalline polymers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.