The present study was performed to investigate the effects of long-term heat stress on mass, strength and gene expression profile of human skeletal muscles without exercise training. Eight healthy men were subjected to 10-week application of heat stress, which was performed for the quadriceps muscles for 8 h/day and 4 days/week by using a heat- and steam-generating sheet. Maximum isometric force during knee extension of the heated leg significantly increased after heat stress (~5.8%, P < 0.05). Mean cross-sectional areas (CSAs) of vastus lateralis (VL, ~2.7%) and rectus femoris (~6.1%) muscles, as well as fiber CSA (8.3%) in VL, in the heated leg were also significantly increased (P < 0.05). Statistical analysis of microarrays (SAM) revealed that 10 weeks of heat stress increased the transcript level of 925 genes and decreased that of 1,300 genes, and gene function clustering analysis (Database for Annotation, Visualization and Integrated Discovery: DAVID) showed that these regulated transcripts stemmed from diverse functional categories. Transcript level of ubiquinol-cytochrome c reductase binding protein (UQCRB) was significantly increased by 10 weeks of heat stress (~3.0 folds). UQCRB is classified as one of the oxidative phosphorylation-associated genes, suggesting that heat stress can stimulate ATP synthesis. These results suggested that long-term application of heat stress could be effective in increasing the muscle strength associated with hypertrophy without exercise training.
Abstract:The effect of functional overloading on the regenerating process of injured skeletal muscle was investigated in 10-week-old male mice (C57BL/6J). Functional overloading on soleus of both hindlimbs was performed by cutting the distal tendons of plantaris and gastrocnemius muscles for 2 weeks before cardiotoxin (CTX) injection as the preconditioning and also during 10 weeks of recovery. To activate the necrosisregeneration cycle, 0.1 ml of 10-µM CTX was injected into soleus muscle. The mean values of absolute muscle weight and the percentage of Pax7-positive nuclei in soleus were increased by the preconditioning. These values, as well as total muscle protein content, in the group with CTX injection plus overloading were larger than in the group with CTX injection alone. Fibers with central nucleus were noted in the group with CTX injection with or without overloading. The rate of disappearance of fibers having central nucleus during recovery was stimulated by overloading. Histological analyses revealed that the regeneration of injured soleus muscle with overloading proceeded more rapidly than the muscle without overloading. These results, in combination with previous lines of evidence, strongly suggest that functional overloading may facilitate the regeneration of injured skeletal muscles.
Aging is one of the major pathologic factors associated with osteoarthritis (OA). Recently, numerous reports have demonstrated the impact of sirtuin-1 (Sirt1), which is the NAD-dependent deacetylase, on human aging. It has been demonstrated that Sirt1 induces osteogenic and chondrogenic differentiation of mesenchymal stem cells. However, the role of Sirt1 in the OA chondrocytes still remains unknown. We postulated that Sirt1 regulates a hypertrophic chondrocyte lineage and degeneration of articular cartilage through the activation of osteogenic transcriptional activator Runx2 and matrix metalloproteinase (MMP)-13 in OA chondrocytes. To verify whether sirtuin-1 (Sirt1) regulates chondrocyte activity in OA, we studied expressions of Sirt1, Runx2 and production of MMP-13, and their associations in human OA chondrocytes. The expression of Sirt1 was ubiquitously observed in osteoarthritic chondrocytes; in contrast, Runx2 expressed in the osteophyte region in patients with OA and OA model mice. OA relating catabolic factor IL-1βincreased the expression of Runx2 in OA chondrocytes. OA chondrocytes, which were pretreated with Sirt1 inhibitor, inhibited the IL-1β-induced expression of Runx2 compared to the control. Since the Runx2 is a promotor of MMP-13 expression, Sirt1 inactivation may inhibit the Runx2 expression and the resultant down-regulation of MMP-13 production in chondrocytes. Our findings suggest thatSirt1 may regulate the expression of Runx2, which is the osteogenic transcription factor, and the production of MMP-13 from chondrocytes in OA. Since Sirt1 activity is known to be affected by several stresses, including inflammation and oxidative stress, as well as aging, SIRT may be involved in the development of OA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.