Background-We compared the therapeutic potential of purified mobilized human CD34ϩ cells with that of mobilized total mononuclear cells (tMNCs) for the preservation/recovery of myocardial tissue integrity and function after myocardial infarction (MI). Methods and Results-CD34ϩ cells were purified from peripheral blood tMNCs of healthy volunteers by magnetic cell sorting after a 5-day administration of granulocyte colony-stimulating factor. Phosphate-buffered saline (PBS), 5ϫ10 5 CD34
Failures in fracture healing are mainly caused by a lack of vascularization. Adult human circulating CD34+ cells, an endothelial/hematopoietic progenitor-enriched cell population, have been reported to differentiate into osteoblasts in vitro; however, the therapeutic potential of CD34+ cells for fracture healing is still unclear. Therefore, we performed a series of experiments to test our hypothesis that functional fracture healing is supported by vasculogenesis and osteogenesis via regenerative plasticity of CD34+ cells. Peripheral blood CD34+ cells, isolated from total mononuclear cells of adult human volunteers, showed gene expression of osteocalcin in 4 of 20 freshly isolated cells by single cell reverse transcriptase-polymerase chain reaction analysis. Phosphate-buffered saline, mononuclear cells, or CD34+ cells were intravenously transplanted after producing nonhealing femoral fractures in nude rats. Reverse transcriptase-polymerase chain reaction and immunohistochemical staining at the peri-fracture site demonstrated molecular and histological expression of human-specific markers for endothelial cells and osteoblasts at week 2. Functional bone healing assessed by biomechanical as well as radiological and histological examinations was significantly enhanced by CD34+ cell transplantation compared with the other groups. Our data suggest circulating human CD34+ cells have therapeutic potential to promote an environment conducive to neovascularization and osteogenesis in damaged skeletal tissue, allowing the complete healing of fractures.
Background— Multilineage developmental capacity of the CD34 + cells, especially into cardiomyocytes and smooth muscle cells (SMCs), is still controversial. In the present study we performed a series of experiments to prove our hypothesis that vasculogenesis and cardiomyogenesis after myocardial infarction (MI) may be dose-dependently enhanced after CD34 + cell transplantation. Methods and Results— Peripheral blood CD34 + cells were isolated from total mononuclear cells of patients with limb ischemia by apheresis after 5-day administration of granulocyte colony-stimulating factor. PBS and 1×10 3 (low), 1×10 5 (mid), or 5×10 5 (high) CD34 + cells were intramyocardially transplanted after ligation of the left anterior descending coronary artery of nude rats. Functional assessments with the use of echocardiography and a microtip conductance catheter at day 28 revealed dose-dependent preservation of left ventricular function by CD34 + cell transplantation. Necropsy examination disclosed dose-dependent augmentation of capillary density and dose-dependent inhibition of left ventricular fibrosis. Immunohistochemistry for human-specific brain natriuretic peptide demonstrated that human cardiomyocytes were dose-dependently observed in ischemic myocardium at day 28 (high, 2480±149; mid, 1860±141; low, 423±9; PBS, 0±0/mm 2 ; P <0.05 for high versus mid and mid versus low). Immunostaining for smooth muscle actin and human leukocyte antigen or Ulex europaeus lectin type 1 also revealed dose-dependent vasculogenesis by endothelial cell and SMC development after CD34 + cell transplantation. Reverse transcriptase–polymerase chain reaction indicated that human-specific gene expression of cardiomyocyte (brain natriuretic peptide, cardiac troponin-I, myosin heavy chain, and Nkx 2.5), SMC (smooth muscle actin and sm22α), and endothelial cell (CD31 and KDR) markers were dose-dependently augmented in MI tissue. Conclusions— Human CD34 + cell transplantation may have significant and dose-dependent potential for vasculogenesis and cardiomyogenesis with functional recovery from MI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.