A new dinoflagellate Durinskia capensis Pienaar, Sakai et Horiguchi sp. nov. (Peridiniales, Dinophyceae), from tidal pools along the west coast of the Cape Peninsula, Republic of South Africa, is described. The dinoflagellate produces characteristic dense orange-red colored blooms in tidal pools. The organism is characterized by having a eukaryotic endosymbiotic alga. Ultrastructure study revealed the organism has a cellular construction similar to that of other diatom-harboring dinoflagellates. The cell is thecate and the plate formula is: Po, x, 4', 2a, 6'', 5c, 4s, 5''', 2'''', which is the same as that of Durinskia baltica, the type species of the genus Durinskia. D. capensis can, however, be distinguished from D. baltica by overall cell shape, the relative size of the 1a and 2a plates, the degree of cingular displacement, and the shape of the eyespot. Our molecular analysis based on SSU rDNA revealed that D. capensis is closely allied to D. baltica, thus supporting the assignment of this new species to this genus. This Durinskia clade takes a sister position to another diatom-harboring dinoflagellate clade, which includes Kryptoperidinium foliaceum and Galeidinium rugatum. Molecular analysis based on the rbcL gene sequence and ultrastructure study revealed that the endosymbiont of D. capensis is a diatom. The SSU rDNA gene trees indicated that four species with a diatom endosymbiont formed a clade, suggesting a single endosymbiotic origin.
Dinothrix paradoxa and Gymnodinium quadrilobatum are benthic dinoflagellates possessing diatom-derived tertiary plastids, so-called dinotoms. Due to the lack of available genetic information, their phylogenetic relationship remains unknown. In this study, sequencing of 18S ribosomal DNA (rDNA) and the rbcL gene from temporary cultures isolated from natural samples revealed that they are close relatives of another dinotom, Galeidinium rugatum. The morphologies of these three dinotoms differ significantly from each other; however, they share a distinctive life cycle, in which the non-motile cells without flagella are their dominant phase. Cell division occurs in this non-motile phase, while swimming cells only appear for several hours after being released from each daughter cell. Furthermore, we succeeded in isolating and establishing two novel dinotom strains, HG180 and HG204, which show a similar life cycle and are phylogenetically closely related to the aforementioned three species. The non-motile cells of strain HG180 are characterized by the possession of a hemispheroidal cell covered with numerous nodes, while those of the strain HG204 form aggregations consisting of spherical smooth-surface cells. Based on the similarity in life cycles and phylogenetic closeness, we conclude that all five species should belong to a single genus, Dinothrix, the oldest genus within this clade. We transferred Ga. rugatum and Gy. quadrilobatum to Dinothrix, and described strains HG180 and HG204 as Dinothrix phymatodea sp. nov. and Dinothrix pseudoparadoxa sp. nov.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.