In this study, the high-resolution polygonal land cover data of EEA Urban Atlas was applied for land-use characterization in the dynamic multi-basin hydrological model, HYPE. The objective of the study was to compare this dedicated urban land cover data in semi-distributed hydrological modelling with the widely used but less detailed EEA CORINE. The model was set up for a basin including a small town named Svedala in southern Sweden. In order to verify the ability of the HYPE model to reproduce the observed flow rate, the simulated flow rate was evaluated based on river flow time series, statistical indicators and flow duration curves. Flow rate simulated by the model based on Urban Atlas generally agreed better with observations of summer storm events than the CORINE-based model, especially when the daily rainfall amount was 10 mm/day or more, or the flow exceedance probability was 0.02 to 0.5. It suggests that the added value of the Urban Atlas model is higher for heavy-to-medium storm events dominated by direct runoff. To conclude, the effectiveness of the proposed approach, which aims at improving the accuracy of hydrological simulations in urbanized basins, was supported.
When applying a distributed hydrological model in urban watersheds, grid-based land-use classification data with 10 m resolution are typically used in Japan. For urban hydrological models, the estimation of the impervious area ratio (IAR) of each land-use classification is a crucial factor for accurate runoff analysis. In order to assess the IAR accurately, we created a set of vector-based "urban landscape GIS delineation" data for a typical urban watershed in Tokyo. By superimposing the vector-based delineation map on the grid-based map, the IAR of each grid-based land-use classification was estimated, after calculating the IARs of all grid cells in the entire urban watershed. As a result, we were able to calculate the frequency distribution of IAR for each land-use classification, as well as the spatial distribution of IARs for the urban watershed. It is evident from the results that the reference values of IAR for the landuse classifications were estimated very roughly and inherited errors of between about 7% and 70%, which corresponds to more than 100 mm increase of direct runoff for the 1500 mm annual average precipitation.
Since the 20th century, Japan has experienced a period of very rapid urbanization. Cities have experienced substantial densification and expansion, resulting in gradually elevated flood risk. Urban flooding has also occurred in most large cities in Japan, particularly in Tokyo. In response to this growing problem, much effort and resources have been spent on research and development aimed at understanding, simulating, and managing urban flood risk in Japan. The objective of this review is to summarize, discuss, and share key outputs from some of the main research directions in this field, significant parts of which have been uniquely developed in Japan and only published in Japanese. After a general introduction to urban runoff modeling, in the next section, key historical works in Japan are summarized, followed by a description of the situation in Japan with respect to observations of precipitation and water level. Then, the storage function model approach is reviewed, including an extension to urban basins, as well as recent experiments with AI-based emulation in Japanese basins. Subsequently, we review the prospects of detailed hydrodynamic modeling involving high-resolution, vector-based Geographical Information System (GIS) data for the optimal description of the urban environment with applications in Tokyo. We conclude the paper with some future prospects related to urban flood risk modeling and assessment in Japan.
In this study, a new automated construction method of minute road segments is developed. Numerical simulation models for rainfall-runoff and flood inundation model considering process on roads were based on so-called "Minute road segments" that are formed as simple shape polygons to calculate the flow on roads. In the developed method, firstly crossroads are demarcated from road sections of uninterrupted flow in order to simplify a polygon of road. Secondly road sections and crossroads are divided into minute road segments. The developed method was applied for Kanda catchment and the shapes of minute road segments were validated.It was demonstrated that minute road segments can be created by using the method of this study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.