In recent years Venezuela has faced a severe economic crisis precipitated by political instability and a significant reduction in oil revenue. Public health provision has suffered particularly. Long-term shortages of medicines and medical supplies and an exodus of trained personnel have occurred against the backdrop of a surge in vector-borne parasitic and arboviral infections. Herein, we aim to assess comprehensively the impact of Venezuela's healthcare crisis on vectorborne diseases and the spillover to neighbouring countries. Methods Alongside the ongoing challenges affecting the healthcare system, health-indicator statistics have become increasingly scarce. Official data from the Ministry of Health, for example, are no longer available. To provide and update on vector-borne disease in Venezuela, this study used individualized data from nongovernmental organizations, academic institutions and professional colleges, various local health authorities and epidemiological surveillance programs from neighbouring countries, as well as data available through international agencies. Findings Between 2000-2015 Venezuela witnessed a 365% increase malaria cases followed by a 68% increase (319,765 cases) in late 2017. Neighbouring countries such as Brazil have reported an escalating trend of imported cases from Venezuelan from 1,538 (2014) to 3,129 (2017). Active Chagas disease transmission is reported with seroprevalence in children (<10 years) as high as 12.5% in one community tested (N=64). There has been a nine-fold rise in the mean incidence of dengue between 1990 to 2016. Estimated rates of chikungunya and Zika are 6,975 and 2,057 cases per 100,000 population, respectively, during their epidemic peaks. Interpretation The re-emergence of many arthropod-borne endemic diseases has set in place an epidemic of unprecedented proportions, not only in Venezuela but in the region. Data presented here demonstrates the complex determinants of this situation. National, regional and global authorities must take action to address these worsening epidemics and prevent their expansion beyond Venezuelan borders.
The surveillance of prevalent Leishmania and sand fly species in endemic areas is important for prediction of the risk and expansion of leishmaniasis. In this study, we developed a polymerase chain reaction (PCR)-based method for detection of Leishmania minicircle DNA within individual sand flies. Using this method, we detected minicircle DNA in 6 (3.3%) of 183 sand flies, while 5 (3.5%) of 143 were positive for Leishmania promastigotes in the same areas by microscopic examination. The species were identified as Leishmania (Leishmania) mexicana by nucleotide sequencing of the cytochrome b gene. Additionally, all the Leishmania-positive sand flies were identified as Lutzomyia ayacuchensis by the restriction enzyme digestion of the PCR-amplified 18S ribosomal RNA gene fragments. Since this combined method is relatively easy and can process a large number of samples, it will be a powerful tool for the rapid identification of prevalent sand fly and Leishmania species as well as monitoring the infection rate in sand fly populations in endemic areas.
Entomological monitoring of Leishmania infection in leishmaniasis endemic areas offers epidemiologic advantages for predicting the risk and expansion of the disease, as well as evaluation of the effectiveness of control programs. In this study, we developed a highly sensitive loop-mediated isothermal amplification (LAMP) method for the mass screening of sand flies for Leishmania infection based on the 18S rRNA gene. The LAMP technique could detect 0.01 parasites, which was more sensitive than classical PCR. The method was robust and could amplify the target DNA within 1 hr from a crude sand fly template without DNA purification. Amplicon
Despite recent advances in the cellular and molecular analysis of induction and regulation of mucosal immune responses, little is yet known about differences which occur in aging. To address this important issue, we have compared the mucosal and systemic immune responses of aged (12- to 14-mo- or 2-year-old) and young adult (6- to 8-wk-old) C57BL/6 mice. Both aged and young mice were immunized weekly with three oral doses of 1 mg of OVA and 10 μg of cholera toxin (CT) as mucosal adjuvant. Both groups of mice over 1 or 2 years of age showed reduced levels of Ag-specific mucosal or systemic immune responses at day 21. An Ag-specific B cell enzyme-linked immunospot assay confirmed these results at the cellular level. When the Ag-induced cytokine responses were examined at both protein and mRNA levels, CD4+ T cells from spleen and Peyer’s patches of young adult mice revealed elevated levels of IL-4 production; however, these cytokine responses were significantly diminished in aged mice. In contrast to mucosal immunization, mice s.c. immunized with OVA plus CT resulted in impaired OVA-specific but intact CT B subunit-specific immune responses in 12- to 14-mo-old mice although the responses to both Ags were depressed in 2-year-old mice. These results provide the first evidence that the development of age-associated alterations possibly occurs earlier in the mucosal immune system than in the systemic immune compartment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.