Chrysanthemum is one of the most economically important flowers globally due to its high ornamental value. In recent years, a large percentage of the Chrysanthemum seticuspe genome has been determined, making this species useful as a model chrysanthemum plant. To fully utilize the genome’s information, efficient and rapid gene functional analysis methods are needed. In this study, we optimized the tomato aspermy virus (TAV) vector for virus-induced gene silencing (VIGS) in C. seticuspe. Conventional plant virus inoculation methods, such as the mechanical inoculation of viral RNA transcripts and agroinoculation into leaves, did not achieve successful TAV infections in C. seticuspe, but vacuum infiltration into sprouts was successful without symptoms. The TAV vector harboring 100 nucleotides of the phytoene desaturase (PDS) gene caused photobleaching phenotypes and a reduction in CsPDS expression in C. seticuspe. To our knowledge, this is the first report of VIGS in chrysanthemums.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.