The hepatotoxic effects of alcohol have been described in detail, but factors responsible for its hepatotoxicity have only partially been characterized. For example, it is known that chronic ethanol ingestion increases hepatotoxicity and produces fatty liver, hepatitis and cirrhosis. However, acute ethanol consumption reduces endotoxin hepatotoxicity. It now appears that Kupffer cells participate in several aspects of these phenomena. Previously, most studies on the effects of alcohol on liver function have focused chiefly on the hepatocyte. Recently, attention has been directed towards the effect of ethanol ingestion on Kupffer cell function, which is stimulated by gut-derived endotoxins (lipopolysaccharides) via mechanisms dependent on increased gut permeability and the possible relationship between Kupffer cells and alcohol-induced liver injury. Here we will review new evidence for the proposal that Kupffer cells and endotoxins play a pivotal role in hepatotoxicity following alcohol exposure, based on studies using the continuous intragastric enteral feeding model developed by Tsukamoto and French and an acute model developed by us.
This article represents the proceedings of a symposium at the 2000 ISBRA Meeting in Yokohama, Japan. The chairs were Hidekazu Tsukamoto and Yoshiyuki Takei. The presentations were (1) Tribute to Professor Rajendar K. Chawla, by Craig J. McClain; (2) Dysregulated TNF signaling in alcoholic liver disease, by Craig J. McClain, S. Joshi‐Barve, D. Hill, J Schmidt, I. Deaciuc, and S. Barve; (3) The role of mitochondria in ethanol‐mediated sensitization of the liver, by Anna Colell, Carmen Garcia‐Ruiz, Neil Kaplowitz, and Jose C. Fernandez‐Checa; (4) A peroxisome proliferator (bezafibrate) can prevent superoxide anion release into hepatic sinusoid after acute ethanol administration, by Hirokazu Yokoyama, Yukishige Okamura, Yuji Nakamura, and Hiromasa Ishii; (5) S‐adenosylmethionine affects tumor necrosis factor‐α gene expression in macrophages, by Rajendar K. Chawla, S. Barve, S. Joshi‐Barve, W. Watson, W. Nelson, and C. McClain; (6) Iron, retinoic acid and hepatic macrophage TNFα gene expression in ALD, by Hidekazu Tsukamoto, Min Lin, Mitsuru Ohata, and Kenta Motomura; and (7) Role of Kupffer cells and gut‐derived endotoxin in alcoholic liver injury, by N. Enomoto, K. Ikejima, T. Kitamura, H. Oide, Y. Takei, M. Hirose, B. U. Bradford, C. A. Rivera, H. Kono, S. Peter, S. Yamashina, A. Konno, M. Ishikawa, H. Shimizu, N. Sato, and R. Thurman.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.