Leishmania was found deficient in at least five and most likely seven of the eight enzymes in the heme biosynthesis pathway, accounting for their growth requirement for heme compounds. The xenotransfection of this trypanosomatid protozoan led to their expression of the mammalian genes encoding ␦-aminolevulinate (ALA) dehydratase and porphobilinogen deaminase, the second and the third enzymes of the pathway, respectively. These transfectants still require hemin or protoporphyrin IX for growth but produce porphyrin when ALA was supplied exogenously. Leishmania is thus deficient in all first three enzymes of the pathway. Uroporphyrin I was produced as the sole intermediate by these transfectants, further indicating that they are also deficient in at least two porphyrinogen-metabolizing enzymes downstream of porphobilinogen deaminase, i.e. uroporphyrinogen III co-synthase and uroporphyrinogen decarboxylase. Pulsing the transfectants with ALA induced their transition from aporphyria to uroporphyria. Uroporphyrin I emerged in these cells initially as diffused throughout the cytosol, rendering them sensitive to UV irradiation. The porphyrin was subsequently sequestered in cytoplasmic vacuoles followed by its release and accumulation in the extracellular milieu, concomitant with a reduced photosensitivity of the cells. These events may represent cellular mechanisms for disposing soluble toxic waste from the cytosol. Monocytic tumor cells were rendered photosensitive by infection with uroporphyric Leishmania, suggestive of their potential application for photodynamic therapy.
Conformational stability of proteins is an important factor that determines their resistance/susceptibility to proteolytic digestion. Intracellular proteolysis is the key step in antigen presentation events for protein antigens; hence, it is likely that increasing protein stability reduces the antigenicity of proteins. We prepared three hen egg white lysozyme derivatives possessing different stabilities by chemical modification to clarify the relationship between conformational stability and the antigenicity of the protein. One of the derivatives was conformationally unstabilized by removing one intramolecular disulfide bond, whereas the two others were stabilized by the addition of an intramolecular crosslink. The antigenicity of these derivatives was evaluated using hen egg white lysozyme-specific T-cell hybridoma cells and a B-lymphoma cell line, A20, as antigen-presenting cells. With an increase in conformational stability, the T-cell response decreased. However, the reduction was not derived from the inefficiency of internalization to A20 cells nor the alteration of antigenicity by chemical modifications. Moreover, from analyses of their susceptibility to proteolysis and the kinetics of presentation of the T-cell epitope, it was confirmed that increasing protein stability led to the depression of T-cell epitope generation by increasing resistance to proteolysis. These results have an important implication in devising a new strategy for manipulating T-cell response by the stability of protein antigen. An antigen-specific CD4ϩ T-cell recognizes an antigen-derived peptide that is mounted on a major histocompatibility complex class II molecule on a cell surface of antigen-presenting cells, via its antigen receptor (1, 2). Therefore, the conformation of protein antigens is unlikely to have any role in the step of T-cell recognition. Prior to T-cell activation, however, antigen processing is necessary for a protein antigen to stimulate the specific T-cells; this processing consists of multiple steps of cellular events, i.e. internalization of proteins by antigen-presenting cells, reduction of the disulfide bond and unfolding of proteins, enzymatic digestion, and assembly of the generated peptides with major histocompatibility complex class II molecules (3, 4). Proteases preferentially digest proteins in an unfolded state rather than those in a folded state (5-7); thus, the unfolding may be a crucial step for intracellular antigen processing. In this context, we can expect that depression of protein unfolding by increasing protein stability would reduce the antigenicity of proteins for T-cells.Several reports have demonstrated a relationship between increased antigenicity and the decreased stability of proteins (8 -10). However, the influence of protein stability on the antigenicity remains unknown. To address this issue, we prepared three derivatives of hen egg white lysozyme (HEL) 1 possessing different conformational stabilities (see Table I). A three-disulfide derivative of HEL, S-carboxymethylated HEL at Cys ...
SUMMARYIt is important to identify characteristics that confer on proteins the potential to induce allergenic sensitization and allergenic disease. Protein allergens carry T-cell epitopes that are capable of inducing a type 2 T helper (Th2) cell response. There is limited information regarding factors that govern the allergenicity of proteins. We previously reported that a decrease in the conformational stability of hen-egg lysozyme (HEL) enhanced its capacity to activate HEL-speci®c T cells owing to the increased susceptibility to intracellular antigen processing. To determine whether the conformational stability of HEL makes for a critical contribution to allergenic sensitization in vivo, we immunized BALB/c mice with HEL derivatives of different conformational stability, but which retained a similar three-dimensional structure. The magnitude of in vivo T-cell responses, evaluated by ex vivo proliferative responses of lymph node T cells from mice primed with various HEL derivatives, was inversely correlated with conformational stability, as was interferon-c (IFN-c) and interleukin-4 (IL-4) production by splenic T cells in response to HEL. Immunization of the least stable derivative led to a potent IL-4 response and to immunoglobulin E (IgE) antibody production. We propose that the intrinsic allergenicity of proteins can be determined by the degree of conformational stability.
Cattle have been recognized as a principal reservoir of Escherichia coli O157:H7. This organism appears to be confined to the gastrointestinal tract and is shed in feces. A probiotic product containing lactic acid-producing Streptococcus bovis LCB6 and Lactobacillus gallinarum LCB 12 isolated from adult cattle was developed, and a preliminary experiment was conducted to evaluate its effect on the elimination of E. coli O157 from experimentally infected calves. Eight 4-month-old Holstein calves were orally challenged with E. coli O157 and the probiotic product was administered against four calves continued fecal shedding of E. coli O157 by the 7th day after infection. Fecal shedding of E. coli O157 was completely inhibited and re-shedding was not detected in any of the animals. Remarkable increase of VFAs, especially that of acetic acid in feces after the administration of probiotic bacteria correlated with the diminution of E. coli O157. Four calves that had spontaneously ceased fecal shedding of E. coli O157 by the 7th day exhibited a high concentration of VFAs in feces before and after experimental infection. Although our results are preliminary and obtained from calves under limited conditions, the possible application of probiotic product to reduce fecal shedding of E. coli O157 from cattle is suggested.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.