Biogenic manganese oxides (bio-MnO₂) have been shown to absorb minor metals. Bioreactor cultivation of heterotrophic manganese oxidizing bacteria (MnOB), which produce bio-MnO₂ via oxidation of Mn (II), can be expected to be involved in a promising system for removal and recovery of minor metals from wastewater. However, MnOB enrichment in wastewater treatment is difficult. This study investigated whether MnOB can be cultivated when coupled with nitrification in a system in which soluble microbial products (SMP) from nitrifiers are provided to MnOB as a substrate. A downflow hanging sponge (DHS) reactor was applied for MnOB cultivation with ammonium (NH₄⁺) and Mn (II) continuously supplied. During long-term operation, Mn (II) oxidation was successfully established at a rate of 48 g Mn m⁻³ d⁻¹ and bio-MnO₂ that formed on the sponges were recovered from the bottom of the reactor. The results also revealed that Ni and Co added to the influent were simultaneously removed. Microbial 16S rRNA gene clone analysis identified nitrifiers supporting MnOB growth and showed that only one clone of Bacillus subtilis, which was affiliated with a known MnOB cluster, was present, suggesting the existence of other novel bacteria with the ability to oxidize Mn (II).
Candidatus Accumulibacter phosphatis (Accumulibacter), which plays an important role in enhanced biological phosphorus removal in wastewater treatment plants, is phylogenetically classified into two major types (Types I and II). Phosphate concentrations affect the Accumulibacter community of the biomass enriched in treatment plants. Therefore, in the present study, Accumulibacter enrichments were conducted using a down-flow hanging sponge reactor under five conditions and a wide range of controlled phosphate concentrations in order to investigate how phosphate governs the community. We found that excessive phosphate levels inhibited Accumulibacter activity, that this inhibitory effect was greater for Type II. In addition, the affinity of Type II for phosphate was higher than that of Type I. Type IIA-B dominated at a phosphate concentration less than 5 mg P L−1, while Type IA was dominant at 50 and 500 mg P L−1. These patterns of enrichment may be explained by an inhibition kinetics model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.