Perlecan, a large, multi-domain, heparan sulfate proteoglycan originally identified in basement membrane, interacts with extracellular matrix proteins, growth factors and receptors, and influences cellular signalling. Perlecan is present in a variety of basement membranes and in other extracellular matrix structures. We have disrupted the gene encoding perlecan (Hspg2) in mice. Approximately 40% of Hspg2-/- mice died at embryonic day (E) 10.5 with defective cephalic development. The remaining Hspg2-/- mice died just after birth with skeletal dysplasia characterized by micromelia with broad and bowed long bones, narrow thorax and craniofacial abnormalities. Only 6% of Hspg2-/- mice developed both exencephaly and chondrodysplasia. Hspg2-/- cartilage showed severe disorganization of the columnar structures of chondrocytes and defective endochondral ossification. Hspg2-/- cartilage matrix contained reduced and disorganized collagen fibrils and glycosaminoglycans, suggesting that perlecan has an important role in matrix structure. In Hspg2-/- cartilage, proliferation of chondrocytes was reduced and the prehypertrophic zone was diminished. The abnormal phenotypes of the Hspg2-/- skeleton are similar to those of thanatophoric dysplasia (TD) type I, which is caused by activating mutations in FGFR3 (refs 7, 8, 9), and to those of Fgfr3 gain-of-function mice. Our findings suggest that these molecules affect similar signalling pathways.
Rho GTPases regulate several aspects of tissue morphogenesis during animal development. We found that mice lacking the Rho-inhibitory protein, p190-B RhoGAP, are 30% reduced in size and exhibit developmental defects strikingly similar to those seen in mice lacking the CREB transcription factor. In p190-B RhoGAP-deficient mice, CREB phosphorylation is substantially reduced in embryonic tissues. Embryo-derived cells contain abnormally high levels of active Rho protein, are reduced in size, and exhibit defects in CREB activation upon exposure to insulin or IGF-1. The cell size defect is rescued by expression of constitutively activated CREB, and in wild-type cells, expression of activated Rho or dominant-negative CREB results in reduced cell size. Together, these results suggest that activity of the Rho GTPase modulates a signal from insulin/IGFs to CREB that determines cell size and animal size during embryogenesis.
The glomerular basement membrane of rat kidneys were three-dimensionally observed by quick-freeze and deep-etch replica methods at high resolution. The middle layer (lamina densa) was composed of 6 to 10 nm fibrils which formed a meshwork structure. The space between the fibrils had polygonal shape. The average long dimension of the space between fibrils was 17 nm and the short one was 13 nm. At the outer layer (lamina rara externa), fibrils connected podocytes perpendicularly with the meshwork of the middle layer. At the inner layer (lamina rara interna), similar perpendicular fibrils also connected endothelial cells with the meshwork of the middle layer. This is the first report to visualize the three-dimensional meshwork structure of the middle layer (the lamina densa) in situ. The function of anchoring podocytes to the lamina densa was suggested in the perpendicularly arranged fibrils of the outer layer. The quick-freeze and deep-etch method is useful in analyzing filamentous ultrastructure in glomeruli, and will be applied to clarifying pathological ultrastructure in kidney diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.