The XIS is an X-ray Imaging Spectrometer system, consisting of state-of-the-art charge-coupled devices (CCDs) optimized for X-ray detection, camera bodies, and control electronics. Four sets of XIS sensors are placed at the focal planes of the grazing-incidence, nested thin-foil mirrors (XRT: X-Ray Telescope) onboard the Suzaku satellite. Three of the XIS sensors have front-illuminated CCDs, while the other has a back-illuminated CCD. Coupled with the XRT, the energy range of 0.2-12 keV with energy resolution of 130 eV at 5.9 keV, and a field of view of 18 × 18 are realized. Since the Suzaku launch on 2005 July 10, the XIS has been functioning well.
Supernova remnants (SNRs) retain crucial information about both their parent explosion and circumstellar material left behind by their progenitor. However, the complexity of the interaction between supernova ejecta and ambient medium often blurs this information, and it is not uncommon for the basic progenitor type (Ia or core-collapse) of well-studied remnants to remain uncertain. Here we present a powerful new observational diagnostic to discriminate between progenitor types and constrain the ambient medium density of SNRs using solely Fe K-shell X-ray emission. We analyze all extant Suzaku observations of SNRs and detect Fe Kα emission from 23 young or middle-aged remnants, including five first detections (IC 443, G292.0+1.8, G337.2-0.7, N49, and N63A). The Fe Kα centroids clearly separate progenitor types, with the Fe-rich ejecta in Type Ia remnants being significantly less ionized than in core-collapse SNRs. Within each progenitor group, the Fe Kα luminosity and centroid are well correlated, with more luminous objects having more highly ionized Fe. Our results indicate that there is a strong connection between explosion type and ambient medium density, and suggest that Type Ia supernova progenitors do not substantially modify their surroundings at radii of up to several parsecs. We also detect a K-shell radiative recombination continuum of Fe in W49B and IC 443, implying a strong circumstellar interaction in the early evolutionary phases of these core-collapse remnants.
Despite decades of intense efforts, many fundamental aspects of Type Ia supernova (SNe Ia) remain elusive. One of the major open questions is whether the mass of the exploding white dwarf (WD) is close to the Chandrasekhar limit. Here we report the detection of strong K-shell emission from stable Fe-peak elements in the Suzaku X-ray spectrum of the Type Ia supernova remnant (SNR) 3C 397. The high Ni/Fe and Mn/Fe mass ratios (0.11-0.24 and 0.018-0.033, respectively) in the hot plasma component that dominates the K-shell emission lines indicate a degree of neutronization in the SN ejecta which can only be achieved by electron captures in the dense cores of exploding WDs with a near-Chandrasekhar mass. This suggests a single-degenerate origin for 3C 397, since Chandrasekhar mass progenitors are expected naturally if the WD accretes mass slowly from a companion. Together with other results supporting the double-degenerate scenario, our work adds to the mounting evidence that both progenitor channels make a significant contribution to the SN Ia rate in star-forming galaxies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.