The hallmark of type 2 diabetes, the most common metabolic disorder, is a defect in insulin-stimulated glucose transport in peripheral tissues. Although a role for phosphoinositide-3-kinase (PI3K) activity in insulin-stimulated glucose transport and glucose transporter isoform 4 (Glut4) translocation has been suggested in vitro, its role in vivo and the molecular link between activation of PI3K and translocation has not yet been elucidated. To determine the role of PI3K in glucose homeostasis, we generated mice with a targeted disruption of the gene encoding the p85alpha regulatory subunit of PI3K (Pik3r1; refs 3-5). Pik3r1-/- mice showed increased insulin sensitivity and hypoglycaemia due to increased glucose transport in skeletal muscle and adipocytes. Insulin-stimulated PI3K activity associated with insulin receptor substrates (IRSs) was mediated via full-length p85 alpha in wild-type mice, but via the p50 alpha alternative splicing isoform of the same gene in Pik3r1-/- mice. This isoform switch was associated with an increase in insulin-induced generation of phosphatidylinositol(3,4,5)triphosphate (PtdIns(3,4,5)P3) in Pik3r1-/- adipocytes and facilitation of Glut4 translocation from the low-density microsome (LDM) fraction to the plasma membrane (PM). This mechanism seems to be responsible for the phenotype of Pik3r1-/- mice, namely increased glucose transport and hypoglycaemia. Our work provides the first direct evidence that PI3K and its regulatory subunit have a role in glucose homeostasis in vivo.
MicroRNAs (miRNAs) have been broadly implicated in cancer, but their exact function and mechanism in carcinogenesis remain poorly understood. Elevated miR‐17∼92 expression is frequently found in human cancers, mainly due to gene amplification and Myc‐mediated transcriptional upregulation. Here we show that B cell‐specific miR‐17∼92 transgenic mice developed lymphomas with high penetrance and that, conversely, Myc‐driven lymphomagenesis stringently requires two intact alleles of miR‐17∼92. We experimentally identified miR‐17∼92 target genes by PAR‐CLIP and validated select target genes in miR‐17∼92 transgenic mice. These analyses demonstrate that miR‐17∼92 drives lymphomagenesis by suppressing the expression of multiple negative regulators of the PI3K and NFκB pathways and by inhibiting the mitochondrial apoptosis pathway. Accordingly, miR‐17∼92‐driven lymphoma cells exhibited constitutive activation of the PI3K and NFκB pathways and chemical inhibition of either pathway reduced tumour size and prolonged the survival of lymphoma‐bearing mice. These findings establish miR‐17∼92 as a powerful cancer driver that coordinates the activation of multiple oncogenic pathways, and demonstrate for the first time that chemical inhibition of miRNA downstream pathways has therapeutic value in treating cancers caused by miRNA dysregulation.
T cells develop in the thymus through positive and negative selection, which are responsible for shaping the T cell receptor (TCR) repertoire. To elucidate the molecular mechanisms involved in selection remains an area of intense interest. Here, we identified and characterized a gene product Gasp (Grb2-associating protein, also called Themis) that is critically required for positive selection. Gasp is a cytosolic protein with no known functional motifs that is expressed only in T cells, especially immature CD4/CD8 double positive (DP) thymocytes. In the absence of Gasp, differentiation of both CD4 and CD8 single positive cells in the thymus was severely inhibited, whereas all other TCRinduced events such as -selection, negative selection, peripheral activation, and homeostatic proliferation were unaffected. We found that Gasp constitutively associates with Grb2 via its N-terminal Src homology 3 domain, suggesting that Gasp acts as a thymocytespecific adaptor for Grb2 or regulates Ras signaling in DP thymocytes. Collectively, we have described a gene called Gasp that is critical for positive selection. (2). The fate of individual DP thymocytes is determined by the strength of affinity and longevity of interaction between their TCR and peptide:MHC ligand (3). Although it is known that strong TCR/ligand interaction leads to negative selection and weak association results in positive selection (4), how this quantitative difference of TCR interaction can be converted to the qualitative difference is not known. Therefore, it is important to investigate the difference in molecular mechanisms of positive and negative selection.
The molecular mechanisms that regulate B-cell development and tolerance remain incompletely understood. In this study, we identify a critical role for the miR-17∼92 microRNA cluster in regulating B-cell central tolerance and demonstrate that these miRNAs control early B-cell development in a cell-intrinsic manner. While the cluster member miR-19 suppresses the expression of Pten and plays a key role in regulating B-cell tolerance, miR-17 controls early B-cell development through other molecular pathways. These findings demonstrate differential control of two closely linked B-cell developmental stages by different members of a single microRNA cluster through distinct molecular pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.