Rice, one of the world's most important food plants, has important syntenic relationships with the other cereal species and is a model plant for the grasses. Here we present a map-based, finished quality sequence that covers 95% of the 389 Mb genome, including virtually all of the euchromatin and two complete centromeres. A total of 37,544 nontransposable-element-related protein-coding genes were identified, of which 71% had a putative homologue in Arabidopsis. In a reciprocal analysis, 90% of the Arabidopsis proteins had a putative homologue in the predicted rice proteome. Twenty-nine per cent of the 37,544 predicted genes appear in clustered gene families. The number and classes of transposable elements found in the rice genome are consistent with the expansion of syntenic regions in the maize and sorghum genomes. We find evidence for widespread and recurrent gene transfer from the organelles to the nuclear chromosomes. The map-based sequence has proven useful for the identification of genes underlying agronomic traits. The additional single-nucleotide polymorphisms and simple sequence repeats identified in our study should accelerate improvements in rice production.
viruses were injected to follicles on both wings for later studies. Chickens were raised in cages and observed on a daily basis over a two-month period. The regenerated feathers were plucked and examined with a dissection or scanning electron micrograph microscope for abnormalities compared with normal primary remiges. Histology and in situ hybridizationParaffin sections (5 mm) were stained with haematoxylin and eosin or prepared for in situ hybridization following routine procedures 26 . Cryostat sections (10 mm) were stained with X-gal. TUNEL staining was performed using a kit (Roche). Nonradioactive wholemount or section in situ hybridization or section in situ hybridization was performed according to the protocol described 22,26 . After hybridization, sections were incubated with an antidigoxigenin Fab conjugated to alkaline phosphatase (Boehringer Mannheim). Colour was detected by incubating with a Boehringer Mannheim purple substrate (Roche).
Pancreatic stellate cells (PSCs) are activated during pancreatitis and promote pancreatic fibrosis by producing and secreting ECMs such as collagen and fibronectin. IL-1beta has been assumed to participate in pancreatic fibrosis by activating PSCs. Activated PSCs secrete various cytokines that regulate PSC function. In this study, we have examined IL-1beta secretion from culture-activated PSCs as well as its regulatory mechanism. RT-PCR and ELISA have demonstrated that PSCs express IL-1beta mRNA and secrete IL-1beta peptide. Inhibition of TGF-beta(1) activity secreted from PSCs by TGF-beta(1)-neutralizing antibody attenuated IL-1beta secretion from PSCs. Exogenous TGF-beta(1) increased IL-1beta expression and secretion by PSCs in a dose-dependent manner. Adenovirus-mediated expression of dominant-negative (dn)Smad2/3 expression reduced both basal and TGF-beta(1)-stimulated IL-1beta expression and secretion by PSCs. Coexpression of Smad3 with dnSmad2/3 restored IL-1beta expression and secretion by PSCs, which were attenuated by dnSmad2/3 expression. In contrast, coexpression of Smad2 with dnSmad2/3 did not alter them. Furthermore, inhibition of IL-1beta activity secreted from PSCs by IL-1beta-neutralizing antibody attenuated TGF-beta(1) secretion from PSCs. Exogenous IL-1beta enhanced TGF-beta(1) expression and secretion by PSCs. IL-1beta activated ERK, and PD-98059, a MEK1 inhibitor, blocked IL-1beta enhancement of TGF-beta(1) expression and secretion by PSCs. We propose that an autocrine loop exists between TGF-beta(1) and IL-1beta in activated PSCs through Smad3- and ERK-dependent pathways.
Interleukin (IL)-6 is a proinflammatory cytokine assumed to participate in pancreatic fibrosis by activating pancreatic stellate cells (PSCs). Autocrine TGF-beta1 is to central in PSC functional regulation. In this study, we examined IL-6 secretion from culture-activated rat PSCs and its regulatory mechanism. Activated PSCs express and secrete IL-6. When anti-TGF-beta1 neutralizing antibody was added in the culture medium, IL-6 secretion from activated PSCs was inhibited, whereas exogenous TGF-beta1 added in the culture medium enhanced IL-6 expression and secretion by PSCs in a dose dependent manner. Infection of PSCs with an adenovirus expressing dominant-negative Smad2/3 attenuated basal and TGF-beta1-stimulated IL-6 expression and secretion of PSCs. We also demonstrated the reciprocal effect of PSCs-secreted IL-6 on autocrine TGF-beta1. Anti-IL-6 neutralizing antibody inhibited TGF-beta1 secretion from PSCs. Preincubation of cells with 10 nM PD98059, an extracellular signal-regulated kinase (ERK)-dependent pathway inhibitor, attenuated IL-6-enhanced TGF-beta1 expression and secretion of PSCs. In addition, IL-6 activated ERK in PSCs. These data indicate the existence of autocrine loop between IL-6 and TGF-beta1 through ERK- and Smad2/3-dependent pathways in activated PSCs.
Cyclooxygenase-2 (COX-2) mediates various inflammatory responses and is expressed in pancreatic tissue from patients with chronic pancreatitis. To examine the role of COX-2 in chronic pancreatitis, we investigated its participation in regulating functions of pancreatic stellate cells (PSCs), using isolated rat PSCs. COX-2 was expressed in culture-activated PSCs but not in freshly isolated quiescent PSCs. TGF-beta1, IL-1beta, and IL-6 enhanced COX-2 expression in activated PSCs, concomitantly increasing the expression of alpha-smooth muscle actin (alpha-SMA), a parameter of PSC activation. The COX-2 inhibitor NS-398 blocked culture activation of freshly isolated quiescent PSCs. NS-398 also inhibited the enhancement of alpha-SMA expression by TGF-beta1, IL-1beta, and IL-6 in activated PSCs. These data indicate that COX-2 is required for the initiation and promotion of PSC activation. We further investigated the mechanism by which cytokines enhance COX-2 expression in PSCs. Adenovirus-mediated expression of dominant negative Smad2/3 inhibited the increase in expression of COX-2, alpha-SMA, and collagen-1 mediated by TGF-beta1 in activated PSCs. Moreover, dominant negative Smad2/3 expression attenuated the expression of COX-2 and alpha-SMA enhanced by IL-1beta and IL-6. Anti-TGF-beta neutralizing antibody also attenuated the increase in COX-2 and alpha-SMA expression caused by IL-1beta and IL-6. IL-6 as well as IL-1beta enhanced TGF-beta1 secretion from PSCs. These data indicate that Smad2/3-dependent pathway plays a central role in COX-2 induction by TGF-beta1, IL-1beta, and IL-6. Furthermore, IL-1beta and IL-6 promote PSC activation by enhancing COX-2 expression indirectly through Smad2/3-dependent pathway by increasing TGF-beta1 secretion from PSCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.