Posture control during a dual-task involves changing the distribution of attention resources between the cognitive and motor tasks and involves the frontal cortex working memory (WM). The present study aimed to better understand the impact of frontal lobe activity and WM capacity in postural control during a dual-task. High and low WM-span groups were compared using their reading span test scores. High and low WM capacity were compared based on cognitive and balance performance and hemoglobin oxygenation (oxyHb) levels during standing during single (S-S), standing during dual (S-D), one leg standing during single (O-S), and one leg standing during dual (O-D) tasks. For sway pass length, significant difference in only the O-D task was observed between both groups. oxyHb levels were markedly increased in the right dorsolateral prefrontal cortex and supplementary motor area in the high-span group during a dual-task. Therefore, WM capacity influenced the allocation of attentional resources and motor performance.
These results suggested that plantar perception exercises might efficiently stabilize standing postural balance in the old old as well as the very old.
Physical performance is mainly assessed in terms of gait speed, chair rise capacity, and balance skills, and assessments are often carried out on the lower limbs. Such physical performance is largely influenced by the strength of the quadriceps and hamstrings muscles. Flexibility of the hamstrings is important because quadriceps muscle activity influences the hip flexion angle. Therefore, hamstring flexibility is essential to improve physical performance. In this study, Myofascial Release (MFR) was applied to the hamstrings to evaluate its effects. MFR on the hamstrings was performed on 17 young adults. Physical function and physical performance were measured before, immediately after, and 5 days after the MFR intervention: finger floor distance (FFD), range of motion (ROM) of the straight leg raising test (SLR), standing long jump (SLJ), squat jump (SJ), functional reach test (FRT), comfortable walking speeds (C-walking speed), and maximum walking speeds (M-walking speed). The results of the analysis show a significant increase in FFD (−2.6 ± 8.9 vs. 0.4 ± 9.4 vs. 2.4 ± 8.9, p < 0.01), SLJ (185.6 ± 44.5 vs. 185.0 ± 41.8 vs. 196.6 ± 40.1, p < 0.01), and M-walking speed (2.9 ± 0.6 vs. 3.0 ± 0.6 vs. 3.3 ± 0.6, p < 0.01). This study has shown that MFR for hamstrings not only improves flexibility but also increases M-walking speed and physical performance of the SLJ. As MFR is safe and does not involve joint movement, it may be useful for maintaining and improving performance and flexibility during inactivity and for stretching before exercise.
Abstract. [Purpose] We investigated the influence of plantar hardness discrimination training on center-of-gravity sway while standing on one-leg.[Subjects] Twenty healthy adult volunteers were randomly divided into intervention (n = 10) and control groups (n = 10).[Methods] The intervention group subjects carried out 10-day plantar hardness discrimination studies on sponges with 5 different levels of hardness. The control group underwent the same training except that they were not instructed to discriminate sponge hardness. Center-of-gravity (COG) sway while standing on one-leg with the eyes open or closed was measured before and after the training. Statistical analyses were performed the COG path length, enveloped area and rectangular area values.[Results] The number of correct answers for hardness discrimination significantly increased with the number of training days. There were significant reductions in the COG path length, enveloped area and rectangular area values after training in the intervention group compared to their respective values prior to training. In contrast, the control group showed no significant changes in these 3 parameters.[Conclusion] Our results suggest that the ability of healthy individuals to regulate center-of-gravity sway while standing on one-leg improved with enhancement of plantar perceptual ability through hardness discrimination training.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.