The effective use of targeted therapy is highly dependent upon the identification of responder patient populations. Loss of the Fbw7 tumor suppressor is frequently found in various types of human cancers including breast cancer, colon cancer 1 and T-cell acute lymphoblastic leukemia (T-ALL)2. In line with these genomic data, engineered deletion of Fbw7 in mouse T cells results in T-ALL3–5, validating Fbw7 as a T-ALL tumor suppressor. The precise molecular mechanisms by which Fbw7 exerts anti-tumor activity remain areas of intensive investigation and are thought to relate in part to Fbw7-mediated destruction of key cancer relevant proteins including c-Jun6, c-Myc 7, Cyclin E 8 and Notch-19, all of which possess oncogenic activity and are overexpressed in various human cancers including leukemia. Besides accelerating cell growth 10, overexpression of either c-Jun, c-Myc or Notch-1 can also provoke programmed cell death 11. Thus, considerable uncertainty surrounds how Fbw7-deficient cells evade cell death in the setting of upregulated c-Jun, c-Myc and/or Notch-1. Here we report that SCFFbw7 governs cellular apoptosis by targeting the pro-survival Bcl-2 family member, Mcl-1, for ubiquitination and destruction in a GSK3 phosphorylation-dependent manner. Human T-ALL cell lines showed a close relationship between Fbw7 loss and Mcl-1 overexpression. Correspondingly, T-ALL cell lines with defective Fbw7 are particularly sensitive to the multi-kinase inhibitor, sorafenib, but resistant to the Bcl-2 antagonist, ABT-737. On the genetic level, Fbw7 reconstitution or Mcl-1 depletion restores ABT-737 sensitivity, establishing Mcl-1 as a therapeutically relevant bypass survival mechanism for Fbw7-deficient cells to evade apoptosis. Therefore, our work provides novel molecular insight into Fbw7-direct tumor suppression with direct implications for the targeted treatment of Fbw7-deficient T-ALL patients.
F-box proteins, which are the substrate-recognition subunits of SKP1–cullin 1–F-box protein (SCF) E3 ligase complexes, have pivotal roles in multiple cellular processes through ubiquitylation and subsequent degradation of target proteins. Dysregulation of F-box protein-mediated proteolysis leads to human malignancies. Notably, inhibitors that target F-box proteins have shown promising therapeutic potential, urging us to review the current understanding of how F-box proteins contribute to tumorigenesis. As the physiological functions for many of the 69 putative F-box proteins remain elusive, additional genetic and mechanistic studies will help to define the role of each F-box protein in tumorigenesis, thereby paving the road for the rational design of F-box protein-targeted anticancer therapies.
Akt, also known as protein kinase B, plays key roles in cell proliferation, survival and metabolism. Akt hyperactivation contributes to many pathophysiological conditions, including human cancers1–3, and is closely associated with poor prognosis and chemo- or radio-therapeutic resistance4. Phosphorylation of Akt at S473 (ref. 5) and T308 (ref. 6) activates Akt. However, it remains unclear whether further mechanisms account for full Akt activation, and whether Akt hyperactivation is linked to misregulated cell cycle progression, another cancer hallmark7. Here we report that Akt activity fluctuates across the cell cycle, mirroring cyclin A expression. Mechanistically, phosphorylation of S477 and T479 at the Akt extreme carboxy terminus by cyclin-dependent kinase 2 (Cdk2)/cyclin A or mTORC2, under distinct physiological conditions, promotes Akt activation through facilitating, or functionally compensating for, S473 phosphorylation. Furthermore, deletion of the cyclin A2 allele in the mouse olfactory bulb leads to reduced S477/T479 phosphorylation and elevated cellular apoptosis. Notably, cyclin A2-deletion-induced cellular apoptosis in mouse embryonic stem cells is partly rescued by S477D/T479E-Akt1, supporting a physiological role for cyclin A2 in governing Akt activation. Together, the results of our study show Akt S477/T479 phosphorylation to be an essential layer of the Akt activation mechanism to regulate its physiological functions, thereby providing a new mechanistic link between aberrant cell cycle progression and Akt hyperactivation in cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.