To predict the prognosis of neuroblastoma patients and choose a better therapeutic protocol, we developed a cDNA microarray carrying 5340 genes obtained from primary neuroblastomas and examined 136 tumor samples. We made a probabilistic output statistical classifier that provided a high accuracy in prognosis prediction (89% at 5 years) and a highly reliable method to validate it. Kaplan-Meier analysis indicated that the patients in an intermediate group defined by existing markers are divided by microarray into two further groups with 5 year survivals for 36% and 89% of patients (p < 10(-4)), i.e., with unfavorably and favorably predicted neuroblastomas, respectively. According to these results, we developed a gene subset chip for a clinical tool, for which our classifier exhibited 88% prediction accuracy.
The ADAM (a disintegrin and metalloprotease) family is a group of transmembrane proteins containing cell adhesive and proteolytic functional domains. Microarray analysis detected elevated ADAM9 during the transition of human LNCaP prostate cancer cells from an androgen-dependent to an androgen-independent and metastatic state. Using a prostate tissue array (N = 200), the levels of ADAM9 protein expression were also elevated in malignant as compared with benign prostate tissues. ADAM9 protein expression was found in 43% of benign glands with light staining and 87% of malignant glands with increasing intensity of staining. We found that ADAM9 mRNA and protein expressions were elevated on exposure of human prostate cancer cells to stress conditions such as cell crowding, hypoxia, and hydrogen peroxide. We uncovered an ADAM9-like protein, which is predominantly induced together with the ADAM9 protein by a brief exposure of prostate cancer cells to hydrogen peroxide. Induction of ADAM9 protein in LNCaP or C4-2 cells can be completely abrogated by the administration of an antioxidant, ebselen, or genetic transfer of a hydrogen peroxide degradative enzyme, catalase, suggesting that reactive oxygen species (ROS) are a common mediator. The induction of ADAM9 by stress can be inhibited by both actinomycin D and cycloheximide through increased gene transcription and protein synthesis. In conclusion, intracellular ROS and/or hydrogen peroxide, generated by cell stress, regulate ADAM9 expression. ADAM9 could be responsible for supporting prostate cancer cell survival and progression. By decreasing ADAM9 expression, we observed apoptotic cell death in prostate cancer cells.
Strong, monochromatic, coherent and continuous terahertz (THz) radiation was generated from the intrinsic Josephson junctions in a cylindrical stand-alone mesa sandwich structure fabricated from a single crystal of the high-temperature superconductor Bi2Sr2CaCu2O8+δ. By varying the base temperature and the dc bias current-voltage characteristic (IVC) points, the emission frequency is tunable from 0.5 to a record high 2.4 THz observed on two inner IVC branch points. Strong emission power peaks were observed at 1.0 THz and 1.6 THz. This device is hence an excellent candidate to fill the “THz gap” between ∼1.4 and 2.0 THz.
Osteocalcin (OC), a major noncollagenous bone matrix protein, is expressed prevalently in prostate cancer epithelial cells, adjacent fibromuscular stromal cells, and osteoblasts in locally recurrent prostate cancer and prostate cancer bone metastasis [Matsubara, S., Wada, Y., Gardner, T.A., Egawa, M., Park, M.S., Hsieh, C.L., Zhau, H.E., Kao, C., Kamidono, S., Gillenwater, J.Y., and Chung, L.W. (2001). Cancer Res. 61, 6012-6019]. We constructed an adenovirus vector carrying osteocalcin promoter-driven herpes simplex virus thymidine kinase (Ad-OC-hsv-TK) to cotarget prostate cancer cells and their surrounding stromal cells. A phase I dose escalation clinical trial of the intralesional administration of Ad-OC-hsv-TK followed by oral valacyclovir was conducted at the University of Virginia (Charlottesville, VA) in 11 men with localized recurrent and metastatic hormone-refractory prostate cancer (2 local recurrent, 5 osseous metastasis, and 4 lymph node metastasis) in order to determine the usefulness of this vector for the palliation of androgen-independent prostate cancer metastasis. This is the first clinical trial in which therapeutic adenoviruses are injected directly into prostate cancer lymph node and bone metastasis. Results show that (1). all patients tolerated this therapy with no serious adverse events; (2). local cell death was observed in treated lesions in seven patients (63.6%) as assessed by TUNEL assay, and histomorphological change (mediation of fibrosis) was detected in all posttreated specimens; (3). one patient showed stabilization of the treated lesion for 317 days with no alternative therapy. Of the two patients who complained of tumor-associated symptoms before the treatment, one patient with bone pain had resolution of pain, although significant remission of treated lesions was not observed by image examination; (4). CD8-positive T cells were predominant compared with CD4-positive T cells, B cells (L26 positive), and natural killer cells (CD56 positive) in posttreated tissue specimens; (5). levels of HSV TK gene transduction correlated well with coxsackie-adenovirus receptor expression but less well with the titers of adenovirus injected; and (6). intrinsic OC expression and the efficiency of HSV TK gene transduction affected the levels of HSV TK protein expression in clinical specimens. Our data suggest that this form of gene therapy requires further development for the treatment of androgen-independent prostate cancer metastasis although histopathological and immunohistochemical evidence of apoptosis was observed in the specimens treated. Further studies including the development of viral delivery will enhance the efficacy of Ad-OC-hsv-TK.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.