In robust biological systems, wide deviations from highly controlled normal behavior may be rare, yet they may result in catastrophic complications. While in silico analysis has gained an appreciation as a tool to offer insights into systems-level properties of biological systems, analysis of such rare events provides a particularly challenging computational problem. This paper proposes an efficient stochastic simulation method to analyze rare events in biochemical systems. Our new approach can substantially increase the frequency of the rare events of interest by appropriately manipulating the underlying probability measure of the system, allowing high-precision results to be obtained with substantially fewer simulation runs than the conventional direct Monte Carlo simulation. Here, we show the algorithm of our new approach, and we apply it to the analysis of rare deviant transitions of two systems, resulting in several orders of magnitude speedup in generating high-precision estimates compared with the conventional Monte Carlo simulation.
Background: At least 50% of patients with suspected Mendelian disorders remain undiagnosed after whole-exome sequencing (WES), and the extent to which noncoding variants that are not captured by WES contribute to this fraction is unclear. Whole transcriptome sequencing is a promising supplement to WES, although empirical data on the contribution of RNA analysis to the diagnosis of Mendelian diseases on a large scale are scarce. Results: Here, we describe our experience with transcript-deleterious variants (TDVs) based on a cohort of 5647 families with suspected Mendelian diseases. We first interrogate all families for which the respective Mendelian phenotype could be mapped to a single locus to obtain an unbiased estimate of the contribution of TDVs at 18.9%. We examine the entire cohort and find that TDVs account for 15% of all "solved" cases. We compare the results of RT-PCR to in silico prediction. Definitive results from RT-PCR are obtained from blood-derived RNA for the overwhelming majority of variants (84.1%), and only a small minority (2.6%) fail analysis on all available RNA sources (blood-, skin fibroblast-, and urine renal epithelial cells-derived), which has important implications for the clinical application of RNA-seq. We also show that RNA analysis can establish the diagnosis in 13.5% of 155 patients who had received "negative" clinical WES reports. Finally, our data suggest a role for TDVs in modulating penetrance even in otherwise highly penetrant Mendelian disorders. Conclusions: Our results provide much needed empirical data for the impending implementation of diagnostic RNA-seq in conjunction with genome sequencing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.