Objectives
To investigate the effect of dantrolene, a drug generally used to treat Malignant Hyperthermia (MH), on the Ca2+ release and cardiomyocyte function in failing hearts.
Background
The N-terminal (N: 1-600) and Central (C: 2000-2500) domains of the ryanodine receptor (RyR), harbor many mutations associated with MH in skeletal muscle RyR (RyR1) and polymorphic ventricular tachycardia in cardiac RyR (RyR2). There is strong evidence that inter-domain interaction between these regions plays an important role in the mechanism of channel regulation.
Methods
Sarcoplasmic reticulum (SR) vesicles and cardiomyocytes were isolated from dog LV muscles (normal or rapid ventricular pacing for 4 weeks), for Ca2+ leak, transient, and spark assays. To assess the zipped or unzipped state of the interacting domains, the RyR was fluorescently labeled with methylcoumarin acetate in a site-directed manner. We employed a quartz-crystal microbalance technique to identify the dantrolene binding site within the RyR2.
Results
Dantrolene specifically bound to domain 601-620 in RyR2. In the SR isolated from pacing-induced dog failing hearts, the defective inter-domain interaction_(domain unzipping) has already occurred, causing spontaneous Ca2+ leak. Dantrolene suppressed both domain unzipping and the Ca2+ leak, showing identical drug concentration-dependence (IC50=0.3 μmol/L). In failing cardiomyocytes, both diastolic Ca2+ sparks and delayed afterdepolarization were frequently observed, but 1 μmol/L dantrolene inhibited both events.
Conclusions
Dantrolene corrects defective inter-domain interactions within RyR2 in failing hearts, inhibits spontaneous Ca2+ leak, in turn improves cardiomyocyte function in failing hearts. Thus, dantrolene may have a potential to treat heart failure, specifically targeting the RyR2.
The defective inter-domain interaction between N-terminal and central domains within RyR2 reduces the binding affinity of CaM to RyR2, thereby causing the spontaneous Ca(2+) release events in failing hearts. Correction of the defective CaM binding may be a new strategy to protect against the aberrant Ca(2+) release in heart failure.
The retrovirus precursor protein has an arrangement of several characteristic domains with which it achieves selective and efficient packaging of the genome RNA during particle assembly. In this study, we analyzed the composition of the bovine leukemia virus (BLV) gag proteins and examined their RNA-binding properties in gel mobility shift assays, using various genomic RNA probes synthesized in vitro. Results obtained in amino acid sequence and composition analyses indicate that the matrix-associated protein MA(p15) is further processed by the BLV protease (PR) to generate MA(plO), a short peptide of seven amino acid residues, and p4. The gag precursor is now mapped as NH2-MA(plO)-p4-CA(p24)-NC(p12)-COOH. MA(p15) formed a specific complex with the dimer RNA of the U5-5' gag region presumed to contain the BLV packaging signal but not with other RNAs. The NH2-terminal cleavage product, MA(plO), bound all RNA fragments tested, while the COOH-terminal peptides with a sequence common to mammalian type C retroviruses had little affinity for RNA. The nucleocapsid protein NC(p12) bound to RNAs nonspecifically and randomly in the presence or absence of zinc ions. These results suggest a possible interaction of the NH2 terminus of the gag precursor with the 5' terminus of the genomic RNA in an early phase of particle assembly, when the conserved structure between the MA and CA domains might be involved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.