It has been hypothesized that waking leads to higher firing neurons, with increased energy expenditure, and sleep serves to return activity to baseline levels. Oscillatory activity patterns during different stages of sleep may play specific roles in this process, but consensus has been missing. To evaluate these phenomena in the hippocampus, we recorded from region CA1 neurons in rats across the 24-hr cycle and found that their firing increased upon waking, and decreased 11 % per hr across sleep. Waking and sleep also affected lower and higher firing neurons differently. Interestingly, the incidences of sleep spindles and sharp-wave ripples (SWRs), typically associated with cortical plasticity, were predictive of ensuing firing changes and more robustly than were other oscillatory events. Spindles and SWRs were initiated during non-REM sleep yet the changes were incorporated in the network over the following REM sleep epoch. These findings indicate an important role for spindles and SWRs and provide novel evidence of a symbiotic relationship between non-REM and REM stages of sleep in the homeostatic regulation of neuronal activity.
Purkinje cells are the sole output neurons of the cerebellar cortex and their dysfunction causes severe ataxia. We found that Purkinje cells could be robustly generated from mouse embryonic stem (ES) cells by recapitulating the self-inductive signaling microenvironments of the isthmic organizer. The cell-surface marker Neph3 enabled us to carry out timed prospective selection of Purkinje cell progenitors, which generated morphologically characteristic neurons with highly arborized dendrites that expressed mature Purkinje cell-specific markers such as the glutamate receptor subunit GluRδ2. Similar to mature Purkinje cells, these neurons also showed characteristic spontaneous and repeated action potentials and their postsynaptic excitatory potentials were generated exclusively through nonNMDA glutamate receptors. Fetal transplantation of precursors isolated by fluorescence-activated cell sorting showed orthotopic integration of the grafted neurons into the Purkinje cell layer with their axons extending to the deep cerebellar nuclei and dendrites receiving climbing and parallel fibers. This selective preparation of bona fide Purkinje cells should aid future investigation of this important neuron.
The medial prefrontal cortex (mPFC) plays an important role in memory. By maintaining a working memory buffer, neurons in prelimbic (PL) mPFC may selectively contribute to learning associations between stimuli that are separated in time, as in trace fear conditioning (TFC). Until now, evidence for this bridging role was largely descriptive. Here we used optogenetics to silence neurons in the PL mPFC of rats during learning in TFC. Memory formation was prevented when mPFC was silenced specifically during the interval separating the cue and shock. Our results provide support for a working memory function for these cells and indicate that associating two noncontiguous stimuli requires bridging activity in PL mPFC.
New memories are believed to be consolidated over several hours of post-task sleep. The reactivation or "replay" of hippocampal cell assemblies has been proposed to provide a key mechanism for this process. However, previous studies have indicated that such replay is restricted to the first 10 -30 min of post-task sleep, suggesting that it has a limited role in memory consolidation. We performed long-duration recordings in sleeping and behaving male rats and applied methods for evaluating the reactivation of neurons in pairs as well as in larger ensembles while controlling for the continued activation of ensembles already present during pre-task sleep ("preplay"). We found that cell assemblies reactivate for up to 10 h, with a half-maximum timescale of ϳ6 h, in sleep following novel experience, even when corrected for preplay. We further confirmed similarly prolonged reactivation in post-task sleep of rats in other datasets that used behavior in novel environments. In contrast, we saw limited reactivation in sleep following behavior in familiar environments. Overall, our findings reconcile the duration of replay with the timescale attributed to cellular memory consolidation and provide strong support for an integral role of replay in memory.Neurons that are active during an experience reactivate again afterward during rest and sleep. This replay of ensembles of neurons has been proposed to help strengthen memories, but it has also been reported that replay occurs only in the first 10 -30 min of sleep, suggesting a circumscribed role. We performed long-duration recordings in the hippocampus of rats and found that replay persists for several hours in sleep following novel experience, far beyond the limits found in previous reports based on shorter recordings. These findings reconcile the duration of replay with the hours-long timescales attributed to memory consolidation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.