Three dimensionally ordered macroporous (3DOM) carbons with mesoporous walls were prepared by a colloidal crystal templating method. A three dimensionally ordered composite consisting of monodisperse polystyrene (PS) latex (100-450 nm) and colloidal silica (5-50 nm) was prepared by an evaporation process of suspensions containing PS latex and colloidal silica in water. In the course of the heat treatment of this composite membrane at 573 K under an inert atmosphere, the PS was melted and penetrated into the spaces between the colloidal silica. The penetrated PS was carbonized during further heat treatment to provide a very thin carbon layer on the colloidal silica, and the macropore corresponding to the PS particle size was formed simultaneously. After this procedure, the 3DOM carbon with mesoporous walls was obtained by removing the silica particles. From the results of scanning electron microscope observations and nitrogen adsorption-desorption measurements, it was confirmed that the prepared carbon had a bimodal porous structure, and the sizes of macropores and mesopores of prepared carbon were in good agreement with the sizes of the PS and silica particles used as templates, respectively. The bimodal porous carbon, which had a specific surface area of 1500 m 2 g À1 and 5 nm mesopores, showed highest capacitance of 120 F g À1 in propylene carbonate solution containing 1 mol dm À3 (C 2 H 5 ) 4 NBF 4 . The mesopore size rather than macropore size gave significant effects on the rate capability of carbon electrode during charge and discharge. The bimodal porous carbon having 5 nm mesopores showed an excellent rate capability and its capacitance at a high current density of 4 A g À1 was 109 F g À1 .
Fluoride ion batteries (FIBs) are regarded as promising energy storage devices, and it is important and urgent to develop cathode materials with high energy densities for use in FIBs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.