This paper proposes a novel design for a microfuel cell as an on-chip power source and demonstrates its fabrication and operation to prove the concept. Its simple design is important from the viewpoints of fabrication (e.g., replication), integration, and compatibility with other microdevices. In testing, the prototype cell was able to generate electric power (maximum: ca. 1.4 microW) on methanol without pumps under both neutral and acidic conditions. As for the size, the electrode part of the cell (two cathodes and one anode) is 400 microns in width and 6 mm in length. The evaluation demonstrated that the proposed design is a promising on-chip power source for miniature devices.
The numerical method used in this study is Moving Particle Semi-implicit (MPS) method which is based on moving particles and their interactions. Grids are not necessary. Large deformation of fluids can be calculated without grid tangling. A surface tension calculation model is developed to analyze droplet breakup. This model is verified by the simulation of vibration of an ethanol droplet. Two-dimensional numerical analyses of droplet breakup in liquid-liquid and gas-liquid systems are carried out. The correlation between the Weber number and the breakup mode observed in the calculations agrees with that in the experiments. Breakup behavior of a droplet surrounded by a vapor film is analyzed. Flow in the vapor film is considered, though boiling of water and solidification of the melt droplets are ignored. It is found that the breakup of a droplet is suppressed by the vapor film. The critical Weber number in the vapor film is obtained as 50. Molten core coolability is considered by using this result. The median diameter of stable droplets of the molten core is expected as 5 mm in a typical condition, which is consistent with FARO experiment. This result shows that in Advanced Boiling Water Reactor (ABWR) the debris bed up to 40% of the core can be cooled down in the lower head of the reactor pressure vessel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.