Aims Kidney cells in patients with diabetic nephropathy are reported to be senescent. However, the mechanisms that regulate cellular senescence in the diabetic kidney are still unknown. In the present study, we evaluated the contribution of high glucose to renal cell senescence in streptozotocin (STZ)-induced diabetic mice. Methods Non-diabetic and streptozotocin (STZ, 10 mg kg–1 day–1 for 7 days, i.p.)-induced type 1 diabetic C57BL/6 J mice and cultured human proximal tubular cells were used in this study. Results Hyperglycemia dramatically increased the renal expression of p21 but not other CDK inhibitors such as p16 and p27 at 4 weeks after STZ injection. These changes were accompanied by an increase in senescence-associated β-galactosidase staining in tubular epithelial cells. Administration of insulin at doses that maintained normoglycemia or mild hypoglycemia suppressed the changes induced by STZ. Insulin did not affect the senescent markers in non-diabetic mice. Exposure of cultured human proximal tubular cells to 25 mmol/L, but not 8 mmol/L, glucose medium increased the expression of senescence markers, which was suppressed by knock-down of p21 or sodium glucose cotransporter (SGLT) 2. Conclusions These results suggest that hyperglycemia causes tubular senescence via a SGLT2- and p21-dependent pathway in the type 1 diabetic kidney.
Recent studies demonstrated a possible role of aldosterone in mediating cell senescence. Thus, the aim of this study was to investigate whether aldosterone induces cell senescence in the kidney and whether aldosterone-induced renal senescence affects the development of renal injury. Aldosterone infusion (0.75 μg/h) into rats for 5 weeks caused hypertension and increased urinary excretion rates of proteins and N-acetyl-β-D-glucosaminidase. Aldosterone induced senescence-like changes in the kidney, exhibited by increased expression of the senescence-associated β-galactosidase, overexpression of p53 and cyclin-dependent kinase inhibitor (p21), and decreased expression of SIRT1. These changes were abolished by eplerenone (100 mg/kg/d), a mineralocorticoid receptor (MR) antagonist, but unaffected by hydralazine (80 mg/liter in drinking water). Furthermore, aldosterone induced similar changes in senescence-associated β-galactosidase, p21, and SIRT1 expression in cultured human proximal tubular cells, which were normalized by an antioxidant, N-acetyl L-cysteine, or gene silencing of MR. Aldosterone significantly delayed wound healing and reduced the number of proliferating human proximal tubular cells, while gene silencing of p21 diminished the effects, suggesting impaired recovery from tubular damage. These findings indicate that aldosterone induces renal senescence in proximal tubular cells via the MR and p21-dependent pathway, which may be involved in aldosterone-induced renal injury.
In view of a cytoprotective effect of elastase inhibitor on chemokine-mediated tissue injury, we examined the neuroprotective effect of ONO-5046, a speci®c inhibitor of neutrophil elastase, in rats with spinal cord injury. Standardized spinal cord compression markedly increased cytokine-induced neutrophil chemo-attractant (CINC)-1 mRNA and protein.Their increases correlated with neurologic severity of injured rats. Immunohistochemically, CINC-1 protein was detected sequentially in vascular endothelial cells at 4 h, in perivascular neutrophils at 8 h, and in neutrophils in®ltrating into cord substance at 12 h. Pretreatment with ONO-5046 (50 mg/kg) markedly ameliorated motor disturbance in injured rats, and reduced CINC-1 protein and mRNA expression. ONO-5046 also signi®cantly reduced the increase of neutrophil accumulation or in®ltration estimated by myeloperoxidase activity, and the extent of vascular permeability by Evans blue extravasation in the injured cord segment in comparison to control animals receiving vehicle. These results suggest that CINC-1 contributed to in¯ammation in rat spinal cord injury and ONO-5046 attenuated neurologic damage partly by blocking CINC-1 production of the chemoattractant, preventing neutrophil activation and vascular endothelial cell injury.
BackgroundAlthough constitutive activating mutations in the Wnt/β-catenin signalling pathway are important for colorectal cancer development, canonical signalling through Wnt ligands is essential for β-catenin activation. Here, we investigated the role of (pro)renin receptor ((P)RR), a component of the Wnt receptor complex, in the pathogenesis of colorectal cancer.Methods(P)RR silencing was performed in human colorectal cancer cells containing constitutive activating mutations in the Wnt/β-catenin pathway. (P)RR overexpression was induced in normal colon epithelial cells. Protein and mRNA levels of pathway components were detected, and Wnt signalling activity was measured using a β-catenin reporter. Cell proliferative activity and apoptosis were evaluated using WST-1 assay and flow cytometry. Xenografts were induced in nude mice.Results(P)RR expression was greater in colorectal cancer tissues and cells than in normal colorectal samples. Patients with strong (P)RR expression took more proportion in groups with poorly-differentiated, advanced and rapidly-progressing cancers. (P)RR silencing attenuated the pathway in colorectal cancer cells, impaired their proliferation in vitro and vivo. (P)RR overexpression enhanced the pathway and proliferation of normal colon epithelial cells.ConclusionsAberrant (P)RR expression promotes colorectal cancer through the Wnt/β-catenin signalling pathway despite constitutive pathway-activating mutations. (P)RR is a potential diagnostic and therapeutic target for colorectal cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.