Parasporal inclusion proteins from a total of 1744 Bacillus thuringiensis strains, consisting of 1700 Japanese isolates and 44 reference type strains of existing H serovars, were screened for cytocidal activity against human leukaemia T cells and haemolytic activity against sheep erythrocytes. Of 1684 B. thuringiensis strains having no haemolytic activity, 42 exhibited in vitro cytotoxicity against leukaemia T cells. These non‐haemolytic but leukaemia cell‐toxic strains belonged to several H‐serovars including dakota, neoleonensis, shandongiensis, coreanensis and other unidentified serogroups. Purified parasporal inclusions of the three selected strains, designated 84‐HS‐1‐11, 89‐T‐26‐17 and 90‐F‐45‐14, exhibited no haemolytic activity and no insecticidal activity against dipteran and lepidopteran insects, but were highly cytocidal against leukaemia T cells and other human cancer cells, showing different toxicity spectra and varied activity levels. Furthermore, the proteins from 84‐HS‐1‐11 and 89‐T‐26‐17 were able to discriminate between leukaemia and normal T cells, specifically killing the former cells. These findings may lead to the use of B. thuringiensis inclusion proteins for medical purposes.
The synthesis of large single crystals of GaN (gallium nitride) is a matter of great importance in optoelectronic devices for blue-light-emitting diodes and lasers. Although high-quality bulk single crystals of GaN suitable for substrates are desired, the standard method of cooling its stoichiometric melt has been unsuccessful for GaN because it decomposes into Ga and N(2) at high temperatures before its melting point. Here we report that applying high pressure completely prevents the decomposition and allows the stoichiometric melting of GaN. At pressures above 6.0 GPa, congruent melting of GaN occurred at about 2,220 degrees C, and decreasing the temperature allowed the GaN melt to crystallize to the original structure, which was confirmed by in situ X-ray diffraction. Single crystals of GaN were formed by cooling the melt slowly under high pressures and were recovered at ambient conditions.
We synthesized two high-pressure polymorphs PbNiO(3) with different structures, a perovskite-type and a LiNbO(3)-type structure, and investigated their formation behavior, detailed structure, structural transformation, thermal stability, valence state of cations, and magnetic and electronic properties. A perovskite-type PbNiO(3) synthesized at 800 °C under a pressure of 3 GPa crystallizes as an orthorhombic GdFeO(3)-type structure with a space group Pnma. The reaction under high pressure was monitored by an in situ energy dispersive X-ray diffraction experiment, which revealed that a perovskit-type phase was formed even at 400 °C under 3 GPa. The obtained perovskite-type phase irreversibly transforms to a LiNbO(3)-type phase with an acentric space group R3c by heat treatment at ambient pressure. The Rietveld structural refinement using synchrotron X-ray diffraction data and the XPS measurement for both the perovskite- and the LiNbO(3)-type phases reveal that both phases possess the valence state of Pb(4+)Ni(2+)O(3). Perovskite-type PbNiO(3) is the first example of the Pb(4+)M(2+)O(3) series, and the first example of the perovskite containing a tetravalent A-site cation without lone pair electrons. The magnetic susceptibility measurement shows that the perovskite- and LiNbO(3)-type PbNiO(3) undergo antiferromagnetic transition at 225 and 205 K, respectively. Both the perovskite- and LiNbO(3)-type phases exhibit semiconducting behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.