Bacterial community structure along the Changjiang River (which is more than 2,500 km long) was studied by using denaturing gradient gel electrophoresis (DGGE) and clone library analysis of PCR-amplified 16S ribosomal DNA (rDNA) with universal bacterial primer sets. DGGE profiles and principal-component analysis (PCA) demonstrated that the bacterial community gradually changed from upstream to downstream in both 1998 and 1999. Bacterial diversity, as determined by the Shannon index (H), gradually decreased from upstream to downstream. The PCA plots revealed that the differences in the bacterial communities among riverine stations were not appreciable compared with the differences in two adjacent lakes, Lake Dongting and Lake Poyang. The relative stability of the bacterial communities at the riverine stations was probably due to the buffering action of the large amount of water flowing down the river. Clone library analysis of 16S rDNA revealed that the dominant bacterial groups changed from -proteobacteria and the Cytophaga-FlexibacterBacteroides group upstream to high-G؉C-content gram-positive bacteria downstream and also that the bacterial community structure differed among the stations in the river and the lakes. The results obtained in this study should provide a reference for future changes caused by construction of the Three Gorges Dam.
SUMMARY We previously reported that cell wall protein fractions (CWPs) of the biocontrol agent Pythium oligandrum have elicitor properties in sugar beet and wheat. Here we have examined the effect of treatment with the D-type of CWP, a fraction that contains two major forms (POD-1 and POD-2), on the induction of defence-related genes in sugar beet. Using PCR-based cDNA library subtraction, we identified five genes that were highly expressed in response to CWP treatment. The five genes are probably of oxalate oxidase-like germin (OxOLG), glutathione S-transferase (GST), 5-enol-pyruvylshikimate-phosphate synthase (EPSPS), phenylalanine ammonia-lyase (PAL) and aspartate aminotransferase (AAT). In addition, we purified and characterized POD-1 and POD-2 and found that POD-1 induced all five genes, whereas POD-2 induced three of the genes, but not OxOLG or GST. A sugar beet bioassay indicated that CWP, POD-1 and POD-2 are each sufficient to induce resistance to sugar beet seedling disease caused by Aphanomyces cochlioides. Although carbohydrate analyses indicated that POD proteins were glycoproteins with similar carbohydrate compositions, containing approximately 15.0% carbohydrate by weight, their peptide portions have elicitor activity. Furthermore, cDNAs of POD-1 and POD-2 proteins were cloned, and the deduced amino acid sequences were found to be 82.9% identical. Characterization of their molecular structures indicated that they have an elicitin domain followed by a C-terminal domain with a high frequency of Ser, Thr, Ala and Pro, which is structurally similar to class III elicitins. However, phylogenetic analysis with 22 representative elicitin and elicitin-like proteins showed that POD-1 and POD-2 are distinct from previously defined elicitin and elicitin-like proteins. Therefore, POD-1 and POD-2 are novel oomycete cell wall elicitin-like glycoproteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.