The most common mechanism 1 for generating ultrasound in air is via a piezoelectric transducer, whereby an electrical signal is converted directly into a mechanical vibration. But the acoustic pressure so generated is usually limited to less than 10 Pa, the frequency bandwidth of most piezoelectric ceramics is narrow, and it is difficult to assemble such transducers into a fine-scale phase array with no crosstalk 2,3 . An alternative strategy using micromachined electrostatic diaphragms is showing some promise 4,5 , but the high voltages required and the mechanical weakness of the diaphragms may prove problematic for applications. Here we show that simple heat conduction from porous silicon to air results in high-intensity ultrasound without the need for any mechanical vibrational system. Our non-optimized device generates an acoustic pressure of 0.1 Pa at a power consumption of 1 W cm −2 , and exhibits a flat frequency response up to at least 100 kHz. We expect that substantial improvements in efficiency should be possible. Moreover, as this material lends itself to integration with conventional electronic circuitry, it should be relatively straightforward to develop finely structured phase arrays of these devices, which would give control over the wavefront of the acoustic emissions.
This paper describes a tactile display which provides unrestricted tactile feedback in air without any mechanical contact. It controls ultrasound and produces a stress field in a 3D space. The principle is based on a nonlinear phenomenon of ultrasound: Acoustic radiation pressure. The fabricated prototype consists of 324 airborne ultrasound transducers, and the phase and intensity of each transducer are controlled individually to generate a focal point. The DC output force at the focal point is 16 mN and the diameter of the focal point is 20 mm. The prototype produces vibrations up to 1 kHz. An interaction system including the prototype is also introduced, which enables users to see and touch virtual objects.
The highly task-specific fixation patterns revealed in performance of natural tasks demonstrate the fundamentally active nature of vision, and suggest that in many situations, top-down processes may be a major factor in the acquisition of visual information. Understanding how a top-down visual system could function requires understanding the mechanisms that control the initiation of the different task-specific computations at the appropriate time. This is particularly difficult in dynamic environments, like driving, where many aspects of the visual input may be unpredictable. We therefore examined drivers' abilities to detect Stop signs in a virtual environment when the signs were visible for restricted periods of time. Detection performance is heavily modulated both by the instructions and the local visual context. This suggests that visibility of the signs requires active search, and that the frequency of this search is influenced by learnt knowledge of the probabilistic structure of the environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.