The Ca2(+)-mobilizing actions of the muscarinic receptor agonist, methacholine (MeCh), and the microsomal Ca2+ pump inhibitor, thapsigargin, were investigated in lacrimal acinar cells. As previously shown for parotid cells (J. Biol. Chem. 264: 12266-12271, 1989), thapsigargin activates both internal Ca2+ release and Ca2+ entry from the extracellular space without increasing cellular inositol phosphates. The inorganic Ca2+ antagonist La3+ inhibited MeCh- or thapsigargin-activated Ca2+ entry. However, when added before MeCh or thapsigargin, La3+ inhibited the extrusion of Ca2+ at the plasma membrane. This phenomenon was exploited in protocols designed to investigate the pathways for filling agonist-sensitive Ca2+ stores in lacrimal cells. The results show that, in contrast to previous suggestions that external Ca2+ is required to replenish agonist-regulated Ca2+ stores, the inhibition of Ca2+ extrusion permits recycling of Ca2+ released by MeCh back into an MeCh- and thapsigargin-sensitive pool. Thus, although extracellular Ca2+ is the major source for refilling the intracellular Ca2+ stores under physiological conditions, the pathway by which this Ca2+ enters the pool need not be a direct one. These results are consistent with the recently revised capacitative model for the refilling of intracellular Ca2+ stores through Ca2+ influx subsequent to Ca2+ depletion, according to which refilling of intracellular Ca2+ stores occurs via a cytoplasmic route rather than a direct channel between intracellular Ca2+ stores and the extracellular space.
The intracellular Ca2+ indicator, fura-2, was used to monitor changes in cytosolic [Ca2+] in parotid acinar cells. When parotid cells were incubated in a medium containing low [Ca2+], and [Ca2+] was restored to the physiological range, there was a small increase in cytosolic [Ca2+]. If, however, the cells were first activated by a muscarinic agonist, and receptor activation was terminated before the addition of Ca2+ by the addition of a pharmacological excess of the muscarinic-receptor antagonist atropine, the initial increase in cytosolic [Ca2+] was faster and transiently larger than in the control cells which had not been previously stimulated. This suggested that a stimulation of Ca2+ entry occurred owing to the prior emptying of the agonist-regulated intracellular Ca2+ pool. This extra Ca2+ influx seen in pool-depleted cells persisted even when the interval between the addition of atropine and Ca2+ was increased from 1 to 20 min. Also, when the pool was allowed to refill by adding atropine in the presence of extracellular Ca2+, and Ca2+ was then sequentially removed and restored, the rise in cytosolic [Ca2+] after the addition of extracellular Ca2+ was not rapid, and resembled the increase seen in unstimulated cells. These results indicate that, when the agonist-sensitive Ca2+ pool is emptied by an agonist, Ca2+ influx across the plasma membrane is increased. This influx of Ca2+ occurs independently of the concentrations of inositol phosphates and probably of any second messengers linked directly to receptor activation. It appears rather to be a consequence of the empty state of the Ca2+ pool. Further, we suggest that, whenever the agonist-sensitive Ca2+ pool is emptied by agonist activation, the plasma-membrane permeability to Ca2+ will be increased, and this may account, at least in part, for the phenomenon of receptor-activated Ca2+ entry.
Syn- And anti-[3.3](3,9)carbazolophanes, which are suitable model compounds for sandwich and partial-overlap excimers, respectively, have been synthesized and characterized; the structures of both singlet and triplet carbazole excimer have been described.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.