PurposeAcid-base transport in renal proximal tubules (PTs) is mainly sodium-dependent and conducted in coordination by the apical Na+/H+ exchanger (NHE3), vacuolar H+-adenosine triphosphatase (V-ATPase), and the basolateral Na+/HCO3- cotransporter. V-ATPase on PTs is well-known to play an important role in proton excretion. Recently we reported a stimulatory effect of insulin on these transporters. However, it is unclear whether insulin is involved in acid-base balance in PTs. Thus, we assessed the role of insulin in acid-base balance in PTs.MethodsV-ATPase activity was evaluated using freshly isolated PTs obtained from mice, and specific inhibitors were then used to assess the signaling pathways involved in the observed effects.ResultsV-ATPase activity in PTs was markedly enhanced by insulin, and its activation was completely inhibited by bafilomycin (a V-ATPase-specific inhibitor), Akt inhibitor VIII, and PP242 (an mTORC1/2 inhibitor), but not by rapamycin (an mTORC1 inhibitor). V-ATPase activity was stimulated by 1 nm insulin by approximately 20% above baseline, which was completely suppressed by Akt1/2 inhibitor VIII. PP242 completely suppressed the insulin-mediated V-ATPase stimulation in mouse PTs, whereas rapamycin failed to influence the effect of insulin. Insulin-induced Akt phosphorylation in the mouse renal cortex was completely suppressed by Akt1/2 inhibitor VIII and PP242, but not by rapamycin.ConclusionOur results indicate that stimulation of V-ATPase activity by insulin in PTs is mediated via the Akt2/mTORC2 pathway. These results reveal the mechanism underlying the complex signaling in PT acid-base balance, providing treatment targets for renal disease.
Nitric oxide (NO) has a wide variety of physiological functions in the kidney. Besides the regulatory effects in intrarenal haemodynamics and glomerular microcirculation, in vivo studies reported the diuretic and natriuretic effects of NO. However, opposite results showing the stimulatory effect of NO on Na+ reabsorption in the proximal tubule led to an intense debate on its physiological roles. Animal studies have showed the biphasic effect of angiotensin II (Ang II) and the overall inhibitory effect of NO on the activity of proximal tubular Na+ transporters, the apical Na+/H+ exchanger isoform 3, basolateral Na+/K+ ATPase, and the Na+/HCO3− cotransporter. However, whether these effects could be reproduced in humans remained unclear. Notably, our recent functional analysis of isolated proximal tubules demonstrated that Ang II dose-dependently stimulated human proximal tubular Na+ transport through the NO/guanosine 3′,5′-cyclic monophosphate (cGMP) pathway, confirming the human-specific regulation of proximal tubular transport via NO and Ang II. Of particular importance for this newly identified pathway is its possibility of being a human-specific therapeutic target for hypertension. In this review, we focus on NO-mediated regulation of proximal tubular Na+ transport, with emphasis on the interaction with individual Na+ transporters and the crosstalk with Ang II signalling.
Henoch Schönlein purpura (HSP), also known as IgA vasculitis (IgAV), is a systemic small-vessel vasculitis that predominantly affects adolescents and is rare in adults. In many cases, the onset of HSP has been causally linked to an infectious disease. We encountered a case of HSP with severe renal involvement diagnosed by renal biopsy following bacillus Calmette-Guerin (BCG) therapy for bladder cancer. This is of clinical relevance, as intravesical BCG administration is becoming an established therapy for superficial bladder cancer and is supposed to be safe. It is important for all clinicians to recognize that BCG therapy has this rare but potentially serious systemic complication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.