A new fragment-based method for the rapid development of novel and distinct classes of nonpeptidic protease inhibitors, Substrate Activity Screening (SAS), is described. This method consists of three steps: (1) a library of N-acyl aminocoumarins with diverse, low molecular weight N-acyl groups is screened to identify protease substrates using a simple fluorescence-based assay, (2) the identified N-acyl aminocoumarin substrates are optimized by rapid analogue synthesis and evaluation, and (3) the optimized substrates are converted to inhibitors by direct replacement of the aminocoumarin with known mechanism-based pharmacophores. The SAS method was successfully applied to the cysteine protease cathepsin S, which is implicated in autoimmune diseases. Multiple distinct classes of nonpeptidic substrates were identified upon screening an N-acyl aminocoumarin library. Two of the nonpeptidic substrate classes were optimized to substrates with >8000-fold improvements in cleavage efficiency for each class. Select nonpeptidic substrates were then directly converted to low molecular weight, novel aldehyde inhibitors with nanomolar affinity to cathepsin S. This study demonstrates the unique characteristics and merits of this first substrate-based method for the rapid identification and optimization of weak fragments and provides the framework for the development of completely nonpeptidic inhibitors to many different proteases.
The present study was designed to assess both preventive and therapeutic effects of (S)-1-(2-Hydroxyethyl)-4-methyl-N-[4-(methylsulfonyl) phenyl]-5-[2-(trifluoromethyl) phenyl]-1H-pyrrole-3-carboxamide (CS-3150), a novel nonsteroidal mineralocorticoid receptor antagonist, on renal injury in deoxycorticosterone acetate (DOCA)/salt-induced hypertensive rats (DOCA rats). From 7 weeks of age, DOCA was subcutaneously administered once a week for 4 weeks to uninephrectomized rats fed a high-salt diet. In experiment 1, CS-3150 (0.3-3 mg/kg) was orally administered once a day for 4 weeks coincident with DOCA administration. In experiment 2, after establishment of renal injury by 4 weeks of DOCA/salt loading, CS-3150 (3 mg/kg) was orally administered once a day for 4 weeks with or without continuous DOCA administration. In experiment 1, DOCA/salt loading significantly increased systolic blood pressure (SBP), which was prevented by CS-3150 in a dose-dependent manner. Development of renal injury (proteinuria, renal hypertrophy, and histopathological changes in glomeruli and tubule) was also suppressed by CS-3150 with inhibition of mRNA expression of fibrosis, inflammation, and oxidative stress markers. In experiment 2, under continuous DOCA treatment, CS-3150 clearly ameliorated existing renal injury without lowering SBP, indicating that CS-3150 regressed renal injury independent of its antihypertensive action. Moreover, CS-3150 treatment in combination with withdrawal of DOCA showed further therapeutic effect on renal injury accompanied by reduction in SBP. These results demonstrate that CS-3150 not only prevents but also ameliorates hypertension and renal injury in DOCA rats. Therefore, CS-3150 could be a promising agent for the treatment of hypertension and renal disorders, and may have potential to promote regression of renal injury.
For the synthesis of 2'-phosphorylated oligouridylates by use of new phosphoramidite building units, several masked phosphoryl groups have been examined as 2'-phosphate precursors, which should not be migrated to the 3' position when the 3' hydroxy protecting group must be removed to introduce a phosphoramidite residue into the 3'-position. As a consequence, bis(2-cyano-1,1-dimethylethoxy)thiophosphoryl (BCMETP) was found to be the most suitable 2'-phosphate precursor. This thiophosphoryl group could be introduced into the 2'-hydroxyl of 3',5'-silylated uridine derivative 7 by phosphitylation with bis(2-cyano-1,1-dimethylethoxy)(diethylamino)phosphine followed by sulfurization. Treatment of the 2'-thiophosphorylated product 15 with (HF)(x)().Py in THF gave exclusively the 3',5'-unprotected uridine derivative 16a. Compound 16a was converted to the phosphoramidite unit 22 via a two-step reaction. This building block was used for the solution phase synthesis of U(2'-p)pU (29) and U(2'-ps)pU (30). Both the 2-cyano-1,1-dimethylethyl and 2-cyanoethyl groups were effectively removed from the fully protected derivative 25 by treatment with DBU in the presence of N,O-bis(trimethylsilyl)acetamide (BSA). The resulting 2'-thiophosphoryl group was successfully converted to a phosphoryl group by iodine treatment to give U(2'-p)pU (29). U(2'-ps)pU (30) was also synthesized by a modified procedure without the iodine treatment. Reaction of 29 with a new biotinylating reagent in aqueous solution in the presence of MgCl(2) gave a biotin-labeled product 35 having a pyrophosphate bridge at the 2' position. Reaction of 30 with monobromobimane gave the 2'-S-alkylated product 33 in aqueous solution. Application of the phosphoramidite unit 22 to the solid phase synthesis using aminopropyl CPG gel gave successfully [U(2'-p)p](n)()U (n = 1, 3, 5). It was found that stability of the succinate linker between the CPG and oligouridylates was unaffected by the treatment with DBU when BSA was present. Several enzymatic properties of the synthetic 2'-phosphorylated and 2'-thiophosphorylated oligouridylates are also described.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.