The impact of digestive diseases, which include disorders affecting the oropharynx and alimentary canal, ranges from the inconvenience of a transient diarrhoea to dreaded conditions such as pancreatic cancer, which are usually fatal. Currently, the major limitation for the diagnosis of such diseases is sampling error because, even in the cases of rigorous adherence to biopsy protocols, only a tiny fraction of the surface of the involved gastrointestinal tract is sampled. Optical coherence tomography (OCT), which is an interferometric imaging technique for the minimally invasive measurement of biological samples, could decrease sampling error, increase yield, and even eliminate the need for tissue sampling provided that an automated, quick and reproducible tissue classification system is developed. Segmentation and quantification of ophthalmologic pathologies using OCT traditionally rely on the extraction of thickness and size measures from the OCT images, but layers are often not observed in nonopthalmic OCT imaging. Distinct mathematical methods, namely Principal Component Analysis (PCA) and textural analyses including both spatial textural analysis derived from the two-dimensional discrete Fourier transform (DFT) and statistical texture analysis obtained independently from center-symmetric autocorrelation (CSAC) and spatial grey-level dependency matrices (SGLDM), have been previously reported to overcome this problem. We propose an alternative approach consisting of a region segmentation according to the intensity variation along the vertical axis and a pure statistical technique for feature quantification, i.e. morphological analysis. Qualitative and quantitative comparisons with traditional approaches are accomplished in the discrimination of freshly-excised specimens of gastrointestinal tissues to exhibit the feasibility of the proposed method for computer-aided diagnosis (CAD) in the clinical setting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.