Vesicles from the outer membrane of Porphyromonas gingivalis have the ability to aggregate a wide range of Streptococcus spp., Fusobacterium nucleatum, Actinomyces naeslundii, and Actinomyces viscosus. We found that in the presence of P. gingivalis vesicles, Staphylococcus aureus coaggregated with Streptococcus spp., and the mycelium-type Candida albicans, but not the yeast type. Autoaggregation of S. aureus in the presence of P. gingivalis vesicles is inhibited by L-arginine, L-lysine, and L-cysteine. Both the methicillin-sensitive (MSSA) and -resistant (MRSA) strains of S. aureus were able to coaggregate with Streptococcus spp., A. naeslundii, and A. viscosus when they were treated with P. gingivalis vesicles. P. gingivalis vesicle-treated mycelium-type C. albicans coaggregated with S. aureus, but the yeast-type did not. These results indicate that strains of S. aureus, including MRSA, could adhere to oral biofilms in dental plaque on the tooth surface or in the gingival crevice when P. gingivalis is present.
Co-aggregation among bacterial cells caused by the adherence of one bacterial species to another is a potential colonization mechanism. Several putative aggregation factors for co-aggregation between Porphyromonas (Por.) gingivalis and Prevotella (Pre.) intermedia were partially purified from Por. gingivalis vesicles by gel filtration and affinity chromatography. Antisera against the aggregation factors were made. Analysis using these antisera revealed that 18 and 44 kDa proteins might be responsible for Por. gingivalis vesicle-mediated aggregation of Pre. intermedia. Using antiserum against the 18 kDa protein, the DNA region encoding it was cloned from Por. gingivalis genomic DNA. Sequence analysis revealed that the DNA region was located within the rgpA and kgp genes, encoding Arg-gingipain (Rgp) and Lys-gingipain (Kgp), respectively, and it encoded non-catalytic adhesin domain regions, namely a C-terminal portion of HGP15, the entire HGP17 sequence and an N-terminal portion of HGP27. A portion of the DNA sequence was also found in the haemagglutinin A (hagA) gene. A recombinant glutathione S-transferase (GST)-HGP17 fusion protein reacted to antiserum against the 18 kDa protein and Pre. intermedia cells could adhere to GST-HGP17-conjugated Sepharose 4B beads, indicating that the HGP17 domain protein is responsible for Por. gingivalis vesicle-mediated aggregation of Pre. intermedia.
Porphyromonas gingivalis cells coaggregated with Prevotella intermedia cells. The coaggregation was inhibited with L-arginine, t-lysine, Ne-p-tosyl-t-lysine chloromethyl ketone, trypsin inhibitor, and leupeptin, Heat-and proteinase K-treated P. gingivalis cells showed no coaggregation with P. intermedia cells, whereas heat and proteinase K treatments of P. intermedia cells did not affect the coaggregation. The vesicles from P. gingivalis culture supernatant aggregated with P. intermedia cells, and this aggregation was also inhibited by addition of L-arginine or L-lysine and by heat treatment of the vesicles. The rgpA rgpB, rgpA kgp, rgpA rgpB kgp, and rgpA kgp hagA mutants of P. gingivalis did not coaggregate with P. intermedia. On the other hand, thejimA mutant lacking the FimA fimbriae showed coaggregation with P. intermedia as well as the wild type parent. These results strongly imply that a heat-labile and proteinous factor on the cell surface of P. gingivalis, most likely the gingipain-adhesin complex, is involved in coaggregation of P. gingivalis and P. intermedia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.