D-Glucaric acid (GA), an aldaric acid isolated from various vegetables and fruits, is an important biobased building block. Glucaric acid acetate (GAA), which is acyclic, was synthesized in an acetic anhydride/sulfuric acid mixture. GAA was converted to glucaric acid chloride acetate (GACA) and then polymerized with various diols and diamines in dimethylacetamide solution or by interfacial polymerization in water and chloroform solutions. The polyesters and polyamides were amphiphilic and soluble in water and common organic solvents. The weight-average molecular weights of the polyesters were (0.4−0.7) × 10 3 ; those of the polyamides obtained by solution and interfacial polymerizations were (5.9− 8.0) × 10 3 and (14.5−20.8) × 10 3 , respectively. Differential scanning calorimetry showed that the polyamides were thermoplastic and melted at ca. 140°C, indicating crystallinity; the melting points increased with increasing number of diamine alkyl carbons. Novel biobased crystalline amphiphilic polymers were synthesized from GA.
d-Glucaric acid (GA) is an aldaric acid and consists of an asymmetric acyclic sugar backbone with a carboxyl group positioned at either end of its structure (i.e., the C1 and C6 positions). The purpose of this study was to conduct a conformation analysis of flexible GA as a solution in deuterium oxide by NMR spectroscopy, based on J-resolved conformation analysis using proton-proton ((3) JHH ) and proton-carbon ((2) JCH and (3) JCH ) coupling constants, as well as nuclear overhauser effect spectroscopy (NOESY). The (2) JCH and (3) JCH coupling constants were measured using the J-resolved heteronuclear multiple bond correlation (HMBC) NMR technique. NOESY correlation experiments indicated that H2 and H5 were in close proximity, despite the fact that these protons were separated by too large distance in the fully extended form of the chain structure to provide a NOESY correlation. The validities of the three possible conformers along the three different bonds (i.e., C2C3, C3C4, and C4C5) were evaluated sequentially based on the J-coupling values and the NOESY correlations. The results of these analyses suggested that there were three dominant conformers of GA, including conformer 1, which was H2H3:gauche, H3H4:anti, and H4H5:gauche; conformer 2, which was H2H3:gauche, H3H4:anti, and H4H5:anti; and conformer 3, which was H2H3:gauche, H3H4: gauche, and H4H5:anti. These results also suggested that all three of these conformers exist in equilibrium with each other. Lastly, the results of the current study suggested that the conformational structures of GA in solution were 'bent' rather than being fully extended. Copyright © 2016 John Wiley & Sons, Ltd.
D-Glucaric acid (GA) is the one of aldaric acids and is an important bio-based building block for polymers. In this study, poly(m-xylylene-acetyl glucaramide) and poly(p-xylylene-acetyl glucaramide) were synthesized from GA acetate and two kind of aromatic diamines by solution polymerization. The chemical structures of the polyamides were analyzed by nuclear magnetic resonance spectroscopy. The weight-average molecular weights ranged from 3.3 × 10 3 to 1.15 × 10 4 with a polydispersity of 1.6-1.9, depending on monomer ratio or monomer concentration in solution. The 10% decomposition temperature of the polymers was about 210 C. Differential scanning calorimetry revealed that the polyamides exhibited no peaks attributed to crystallization or melting point, which indicated that the polyamides were amorphous. No crystalline pattern was observed in the X-ray diffractograms, supporting this result. Polarized optical microscopy observation revealed that the polyamides exhibited melting-like behavior at above 150 C, which was attributed to glass-transition behavior.
This study examined the effects of lactosucrose (4G-β-D-galactosylsucrose) on influenza A virus infections in mice. First, the effects of lactosucrose on fermentation in the cecum and on immune function were investigated. In female BALB/c mice, lactosucrose supplementation for 6 weeks promoted cecal fermentation and increased both secretory IgA (SIgA) levels in feces and total IgA and IgG2a concentrations in serum. Both the percentage of CD4+ T cells in Peyer’s patches and the cytotoxic activity of splenic natural killer (NK) cells increased significantly in response to lactosucrose. Next, we examined the effects of lactosucrose on low-dose influenza A virus infection in mice. After 2 weeks of dietary supplementation with lactosucrose, the mice were infected with low-dose influenza A virus. At 7 days post infection, a comparison with control mice showed that weight loss was suppressed, as were viral titers in the lungs. In the spleens of lactosucrose-fed mice, there was an increase in the percentage of NK cells. Lastly, mice fed lactosucrose were challenged with a lethal dose of influenza A virus. The survival rate of these mice was significantly higher than that of mice fed a control diet. These results suggested that lactosucrose supplementation suppresses influenza A virus infection by augmenting innate immune responses and enhancing cellular and mucosal immunity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.