Two bending tests of X80-grade, 48″ high-strain line pipes pressurized to 60% SMYS were conducted to investigate local buckling behavior. The thickness and D/t ratio of the line pipes were 22.0 mm and 55.4, respectively. The mean Y/T ratio of the high-strain pipes was 0.82. A full-scale bending test apparatus was constructed to conduct the bending tests. The bending test results clarified that the pipes have the 2D average critical compressive strain of 1.51 and 1.67%, which satisfy the strain demand of 1.35%. Validation of FEA is conducted taking into account geometric properties of the pipes in terms of outside diameter and thickness and longitudinal flatness. The FEA results coincide with the test results with respect to peak load, critical displacement, critical rotation and critical compressive strain. The FEA results about the load and displacement relationship also show good agreement with the test results during post-buckling deformation. One developed wrinkle and some small wrinkles were observed on the pipe surface during post-buckling deformation, whose cross sections were fairly captured considering the geometric properties.
Newly-developed high quality high frequency electric resistance welded (HFW) linepipes have recently been used in pipelines in reel-lay applications and low temperature service environments because of their excellent low temperature weld toughness and cost effectiveness. In order to clarify the applicability of these HFW linepipes to the seismic environment, a series of full-scale tests such as bending test with internal pressure and uniaxial compression test were conducted according to the seismic design code in Japan gas association (JGA).
Based on the above-mentioned full-scale tests, the safety performance of high quality HFW linepipe to apply to the seismic region is discussed in comparison with the mechanical properties in the small-scale tests such as the tensile and compression property of the base material and weld seam, especially focused on the strain capacity of HFW linepipe from the view points of full-scale performance and geometrical imperfection.
Test results of the bending test with internal pressure and the uniaxial compression were complied with the JGA seismic design code for the permanent ground deformation induced by lateral spreading and surface faults.
This paper presents the results of experimental studies focused on the strain capacity of X80 linepipe. A full-scale bending tests of X80 grade, 48″ high-strain linepipes pressurized to 60% SMYS were conducted to investigate the compressive strain limit and tensile strain limit. The tensile properties Y/T ratios and uniform elongation of the pipes had variety. Three of four pipes are high strain pipes and these Y/T ratios are intentionally low with manufacturing method. One of these high-strain pipe was girth welded in its longitudinal center to investigate the effect of girth weld to strain capacity. The other was set as a conventional pipe that have higher Y/T ratio to make comparative study.
The compressive strain limit focused on the critical strain at the formation of local buckling on the compression side of bending. After pipe reaches its endurable maximum moment, one large developed wrinkle and some small wrinkles on the pipe surface during bending deformation were captured relatively well from observation and strain distribution measurement. The tensile strain limit is discussed from the viewpoint of competition of two fracture phenomena: ductile crack initiation/propagation from an artificial notch at the HAZ of the girth weld, and strain concentration and rupture in the base material at the tension (opposite) side of the local buckling position.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.