This paper shows improvements made to a vertical type tandem twin roll caster and the appropriate casting conditions necessary to cast three-layer clad strips, the base strip of which has a lower solidification temperature than the overlay strip. In experiments, 4045 aluminum alloy was used for the base strip and 3003 aluminum alloy was used for the overlay strips. The roll speed was 30 m/min. By connecting the overlay strips to the base strip one at a time and cooling the base strip to between 450 and 530°C after applying the first overlay strip, a sound three-layer clad strip – defined as one in which the interfaces between strips are clear and do not separate during bending-to-failure tests – could be cast. The tensile shear testing between the base and second overlay strip was improved as the base-strip temperature was increased to 450-530°C range.
The effect of the base strip temperature on the bonding between base strip and overlay strips in a three-layer clad strip cast by a vertical-type tandem twin roll caster was investigated. The base strip was 3003 aluminum alloy and the overlay strip was 4045 aluminum alloy. The bonding was investigated for base strip temperatures ranging from 200 °C to 550 °C. The bonding condition was investigated by cold-rolling, bending-to-failure test and tensile shear test. The shear stress increased with the base strip temperature. Sound bonding was achieved at base strip temperatures higher than 450 °C. The results of this study indicated that the second caster is not required to be set below the first roll caster.
Casting of a wire inserted strip was investigated using a downward melt drag twin roll caster. A nozzle was mounted to each roll. The wire was inserted between the lower and upper strip. Effect of use of two nozzles on the insertion of the wire was investigated. The insertion of the wire by the two nozzles was easier than one nozzle. The surfaces of the wire inserted strip cast using two nozzles was more sound than that cast using one nozzle. The position of the wire at thickness direction was almost center. When different aluminum alloys were poured from an upper nozzle and from a lower nozzle, a wire inserted clad strip could be cast.
Porosity occurred in the 5182 aluminum alloy strip cast by a vertical type high speed twin roll caster. The porosity was caused by high-roll-speed and low-roll-load. Improvement of the porosity was tried by a scraper. The scraper was mounted on the roll, and the scraper was moveable depend on the thickness of the solidified layer on the roll. The scraper scribed the semisolid layer to improve the porosity. The scraper was useful to decrease the porosity of roll cast 5182 aluminum alloy strip.
A twin-wheel caster for casting thin aluminum alloy wire was designed, assembled, and tested. Molten metal was ejected from the nozzle (cross-sectional area: 4 mm2) of a crucible into a triangular groove that was machined on the outer surface of the lower wheel. The metal was solidified by the upper and lower wheels. Wire made of Al-1.2%Fe or 6061 aluminum alloy, whose cross-sectional area was smaller than 20 mm2, could be cast at a speed of 6 or 7 m/min. The upper and lower wheels were made of copper to increase the cooling rate. The diameter of the upper and lower wheels was 200 and 600 mm, respectively. The thickness of the wheels was 10 mm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.