Purpose Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer. Eribulin was approved for the treatment of metastatic breast cancer through the EMBRACE trial, and a subgroup analysis in this clinical trial indicated the efficacy of eribulin in patients with TNBC. However, the prognosis of patients with TNBC is still poor due to various molecular characteristics. Therefore, there is an urgent need for a more effective treatment for the management of TNBC. Methods We investigated the synergistic effect of a novel histone deacetylase (HDAC) inhibitor, OBP-801, and eribulin in TNBC cell lines because OBP-801 has been known to enhance the anti-tumor activities of other chemotherapeutic agents. The cell growth was analyzed, and the flow cytometry analysis was conducted to evaluate the effects on cell cycle and the induction of apoptosis. The mechanism underlying the enhancement of inhibition of TNBC cell growth was investigated through Western blot analyses. Results The combination treatment of OBP-801 with eribulin showed the synergistic inhibition of the growth in TNBC cells, involved with the enhancement of apoptosis. We, for the first time, found that eribulin upregulated survivin and also that OBP-801 could remarkably suppress the upregulation of survivin by eribulin. Moreover, this combination potently suppressed Bcl-xL and the MAPK pathway compared with either agent alone. Conclusion We found that the combination of OBP-801 and eribulin synergistically inhibited the growth with apoptosis in TNBC cells, suggesting that this combination might be a promising novel strategy for treating TNBC patients.
The X-linked inhibitor of apoptosis (XIAP) confers the resistance of various types of cancer to standard chemotherapeutic agents such as anthracycline and taxane. In breast cancer, XIAP is known to be overexpressed. However, the mechanisms underlying the overexpression of XIAP remain currently unclear. In order to elucidate the mechanisms responsible for the overexpression of the XIAP protein in breast cancer, we attempted to clarify the mechanisms by which the natural compound curcumin downregulates XIAP in breast cancer cells. In that process, we identified the ribosomal protein S3 (RPS3) as a curcumin‑binding protein using curcumin-fixed magnetic FG beads. The knockdown of RPS3 inhibited cell growth and induced apoptosis as well as the downregulation of XIAP in breast cancer cells. Although RPS3 is known to directly bind to and activate the nuclear factor-κB (NF-κB), which induces several anti-apoptotic genes such as XIAP, the knockdown of RPS3 unexpectedly reduced the levels of the XIAP protein, but not the mRNA level of XIAP and the transcription factor NF-κB activity. These results reveal that RPS3 upregulates XIAP independently of the NF-κB pathway in human breast cancer cells.
We describe a massive congenital intracranial teratoma (MCIT), which had a normal chromosome banding pattern 46,XY karyotype and a normal diploid DNA histogram, and which produced a variety of carcinoembryonic antigens. The volume density of primitive neural components (primitive neural tubes, small undifferentiated neuroepithelial cells, immature glial fibers and pigment cell components without neurofibrillar differentiation) was estimated to be 45%. We discuss the histogenesis, pathobiology and cell cycle kinetics.
We demonstrate a 30-km-long optical fiber link for frequency comparison between two strontium optical lattice clocks being developed at RIKEN and the University of Tokyo. We use a transfer laser at 1397 nm, which is twice the wavelength of the clock transition of strontium clocks. The link stability is estimated to be 1 × 10−17 for an averaging time of τ = 1 s, which is in good agreement with the theoretical limit calculated from the fiber noise spectrum. We discuss a remote clock comparison with a stability of 1 × 10−17(τ/s)−1/2 by synchronously operating two distant clocks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.