CH-EUS is useful for characterizing conventional EUS-detected solid pancreatic lesions. EUS equipped with contrast harmonic imaging may play an important role in the characterization of small tumors that other imaging methods fail to depict and may improve the diagnostic yield of EUS-FNA.
The clinical significance of L-type amino acid transporter 1 (LAT1) expression remains unclear, whereas many experimental studies have demonstrated that LAT1 is associated with the proliferation of cancer cells. The purpose of this study was to evaluate the prognostic value of LAT1 in patients with nonsmall cell lung cancer (NSCLC). A total of 321 consecutive patients with completely resected pathologic stage I -III NSCLC were retrospectively reviewed. Expression of LAT1 and proliferative activity, as determined by the Ki-67 labelling index, was also evaluated immunohistochemically and correlated with the prognosis of patients who underwent complete resection of the tumour. Expression of LAT1 was positive in 163 patients (51%) (29% of adenocaricnoma (58 of 200 patients), 91% of squamous cell carcinoma (91 of 100 patients), and 67% of large cell carcinoma (14 of 21 patients)). The 5-year survival rate of LAT1-positive patients (51.8%) was significantly worse than that of LAT1-negative patients (87.8%; Po0.001). L-type amino acid transporter 1 expression was significantly associated with lymph node metastasis and disease stage. Multivariate analysis confirmed that positive expression of LAT1 was an independent factor for predicting a poor prognosis. There was a significant correlation between LAT1 expression and Ki-67 labelling index. LAT1 expression is a promising pathological factor to predict the prognosis in patients with resectable stage I -III NSCLC.
These two newly identified Japanese patients with SNCA duplication and the five previously identified American and European families with SNCA triplication or duplication mutations indicate that the incidence of SNCA multiplication may be more frequent than previously estimated.
Oncogenic KRAS is found in more than 25% of lung adenocarcinomas, the major histologic subtype of nonsmall cell lung cancer (NSCLC), and is an important target for drug development. To this end, we generated four NSCLC lines with stable knockdown selective for oncogenic KRAS. As expected, stable knockdown of oncogenic KRAS led to inhibition of in vitro and in vivo tumor growth in the KRAS-mutant NSCLC cells, but not in NSCLC cells that have wild-type KRAS (but mutant NRAS). Surprisingly, we did not see large-scale induction of cell death and the growth inhibitory effect was not complete. To further understand the ability of NSCLCs to grow despite selective removal of mutant KRAS expression, we conducted microarray expression profiling of NSCLC cell lines with or without mutant KRAS knockdown and isogenic human bronchial epithelial cell lines with and without oncogenic KRAS. We found that although the mitogen-activated protein kinase pathway is significantly downregulated after mutant KRAS knockdown, these NSCLCs showed increased levels of phospho-STAT3 and phospho-epidermal growth factor receptor, and variable changes in phospho-Akt. In addition, mutant KRAS knockdown sensitized the NSCLCs to p38 and EGFR inhibitors. Our findings suggest that targeting oncogenic KRAS by itself will not be sufficient treatment, but may offer possibilities of combining anti-KRAS strategies with other targeted drugs. Mol Cancer Ther; 10(2); 336-46.Ó2011 AACR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.