The banking of human leukocyte antigen (HLA)-homozygous-induced pluripotent stem cells (iPSCs) is considered a future clinical strategy for HLA-matched cell transplantation to reduce immunological graft rejection. Here we show the efficacy of major histocompatibility complex (MHC)-matched allogeneic neural cell grafting in the brain, which is considered a less immune-responsive tissue, using iPSCs derived from an MHC homozygous cynomolgus macaque. Positron emission tomography imaging reveals neuroinflammation associated with an immune response against MHC-mismatched grafted cells. Immunohistological analyses reveal that MHC-matching reduces the immune response by suppressing the accumulation of microglia (Iba-1+) and lymphocytes (CD45+) into the grafts. Consequently, MHC-matching increases the survival of grafted dopamine neurons (tyrosine hydroxylase: TH+). The effect of an immunosuppressant, Tacrolimus, is also confirmed in the same experimental setting. Our results demonstrate the rationale for MHC-matching in neural cell grafting to the brain and its feasibility in a clinical setting.
It is well accepted that drug transporters play a pivotal role in hepatobiliary excretion of anionic drugs, in which drug-drug interactions and genetic polymorphisms are known to cause variations. However, PET probes for in vivo functional characterization of these transporters have not been established yet. We used PET to investigate hepatic uptake and subsequent canalicular efflux of 11 C-labeled (15R)-16-m-tolyl-17,18,19,20-tetranorisocarbacyclin methyl ester [(15R)-11 C-TIC-Me)] in healthy subjects. Methods: Serial PET scans of the abdominal region in healthy male subjects were obtained with or without the organic anion-transporting polypeptide (OATP) inhibitor rifampicin after intravenous injection of (15R)-11 C-TIC-Me as a radiotracer. Venous blood samples and PET images were obtained at frequent intervals up to 30 min after administration of the PET tracer. Dynamic imaging data were evaluated by integration plots of data collected for 2-10 min and for 10-30 min after tracer administration for the determination of tissue uptake clearance and biliary efflux clearance, respectively. Results: After rapid hydrolysis in blood, the acid form-11 C-labeled (15R)-16-m-tolyl-17,18,19,20-tetranorisocarbacyclin [(15R)-11 C-TIC]-accumulated in the liver (37% of the dose by 17 min), and the radioactivity was then excreted into the bile (6.2% by 30 min). Rifampicin (600 mg by mouth), a potent OATP inhibitor, significantly reduced the radioactivity excreted into the bile (by 44%) by inhibiting both uptake (by 45%) and subsequent canalicular efflux (by 62%). (15R)-11 C-TIC is an in vitro substrate of OATP1B1 and OATP1B3, and clinically relevant concentrations of rifampicin inhibited uptake by OATP1B1 and OATP1B3. These results demonstrated that in humans, (15R)-11 C-TIC-associated radioactivity is excreted into the bile by organic anion transport systems. Conclusion: We demonstrated that PET image analysis with (15R)-11 C-TIC-Me is useful for investigating variations in OATP function in the human hepatobiliary transport system.
Abstract:The reaction of methyl iodide and (excess) aryltributylstannane to give a methylarene has been studied with the focus on the realization of rapid coupling for incorporation of short-lived radionuclides into bioactive organic compounds. The coupling of methyl iodide with triarylphosphanes -C-C coupling * butylphenylstannane (40 equiv) is accomisotopic labeling palladium tin plished in >90% yield within 5 min at 60 "C with a tri-o-tolylphosphine-bound, coordinatively unsaturated Pdo complex together with a Cu' salt and K,CO, in Keywords
A new synthetic methodology for the rapid methylation and fluoromethylation on aryl and alkenyl frameworks by using methyl and fluoromethyl iodide with an organoboronic acid ester has been developed under the simple and mild conditions of [Pd(2)(dba)(3)]/P(o-CH(3)C(6)H(4))(3)/K(2)CO(3) (dba= dibenzylideneacetone) in DMF at 60 degrees C for 5 min (see scheme). This boron protocol provides a firm chemical basis for the synthesis of (11)C- and (18)F-incorporated PET tracers.The rapid methylation and fluoromethylation on aryl and alkenyl carbon frameworks by reacting methyl and fluoromethyl iodide with aryl and alkenyl boronates have been studied with the focus on the realization of the synthesis of [(11)C]CH(3)- and [(18)F]FCH(2)-labeled positron emission tomography (PET) tracers. The coupling of methyl iodide and pinacol phenylboronate (40 equiv) is accomplished in >91 % yield within 5 min at 60 degrees C under the conditions of [Pd(2)(dba)(3)]/P(o-CH(3)C(6)H(4))(3)/K(2)CO(3) (0.5:2:2; dba=dibenzylideneacetone) in DMF. The reaction shows a high generality and is applicable to various types of aryl and alkenyl boronates, giving the corresponding methylated derivatives in high yields (80-99 %). This reaction is also useful for the rapid incorporation of the fluoromethyl group. Thus, this boron protocol provides a firm chemical basis for the synthesis of (11)C- and (18)F-incorporated PET tracers and can be used as a complementary method for [(11)C]methylation together with our previous and ongoing processes using organotributylstannanes.
Cyclooxygenase (COX)-1 and -2 are prostanoid-synthesizing enzymes that play important roles in the regulation of neuroinflammation and in the development of neurodegenerative disorders. However, the specific functions of these isoforms are still unclear. We recently developed 11 C-labeled ketoprofen methyl ester as a PET probe that targets the COXs for imaging neuroinflammation, though its responsible isoform is yet to be determined. In the present study, we performed ex vivo and in vivo imaging studies with 11 C-ketoprofen methyl ester and determined the contributions of the COX isoforms during the neuroinflammatory process. Methods: To identify the COX isoform responsible for 11 C-ketoprofen methyl ester in the brain, we examined the ex vivo autoradiography of 11 C-ketoprofen methyl ester using COX-deficient mice. Time-dependent changes in accumulation of 11 C-ketoprofen methyl ester during the neuroinflammatory process were evaluated by PET in rats with hemispheric neuroinflammation induced by intrastriatal injection of lipopolysaccharide or quinolinic acid. In both rat models, cell-type specificity of COX isoform expression during neuroinflammation was identified immunohistochemically. Results: Ex vivo autoradiographic analysis of COX-deficient mice revealed a significant reduction of 11 C-ketoprofen methyl ester accumulation only in COX-1-deficient mice, not COX-2-deficient mice. PET of rats after intrastriatal injection of lipopolysaccharide showed a significant increase in accumulation of 11 C-ketoprofen methyl ester in the inflamed area. This increase was evident at the early phase of 6 h, peaked at day 1, and then returned to basal levels by day 7. In addition, immunohistochemical analysis revealed that the population of activated microglia and macrophages was elevated at the early phase with COX-1 expression but not COX-2. A significant increase in 11 C-ketoprofen methyl ester accumulation was also observed at day 1 after intrastriatal injection of quinolinic acid, with increased COX-1-expressing activated microglia and macrophages. Conclusion: We have identified 11 C-ketoprofen methyl ester as a COX-1-selective PET probe, and using this, we have also demonstrated a time-dependent expression of COX-1 in activated microglia and macrophages during the neuroinflammatory process in the living brain. Thus, COX-1 may play a crucial role in the pathology of neuroinflammation and might be a critical target for the diagnosis and therapy of neurodegenerative disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.