Vascularization of organs generally occurs by remodelling of the preexisting vascular system during their differentiation and growth to enable them to perform their specific functions during development. The molecules required by early vascular systems, many of which are receptor tyrosine kinases and their ligands, have been defined by analysis of mutant mice. As most of these mice die during early gestation before many of their organs have developed, the molecules responsible for vascularization during organogenesis have not been identified. The cell-surface receptor CXCR4 is a seven-transmembrane-spanning, G-protein-coupled receptor for the CXC chemokine PBSF/SDF-1 (for pre-B-cell growth-stimulating factor/stromal-cell-derived factor), which is responsible for B-cell lymphopoiesis, bone-marrow myelopoiesis and cardiac ventricular septum formation. CXCR4 also functions as a co-receptor for T-cell-line tropic human immunodeficiency virus HIV-1. Here we report that CXCR4 is expressed in developing vascular endothelial cells, and that mice lacking CXCR4 or PBSF/SDF-1 have defective formation of the large vessels supplying the gastrointestinal tract. In addition, mice lacking CXCR4 die in utero and are defective in vascular development, haematopoiesis and cardiogenesis, like mice lacking PBSF/SDF-1, indicating that CXCR4 is a primary physiological receptor for PBSF/SDF-1. We conclude that PBSF/SDF-1 and CXCR4 define a new signalling system for organ vascularization.
Primary transcripts of certain microRNA (miRNA) genes are subject to RNA editing that converts adenosine to inosine. However, the importance of miRNA editing remains largely undetermined. Here we report that tissue-specific adenosine-to-inosine editing of miR-376 cluster transcripts leads to predominant expression of edited miR-376 isoform RNAs. One highly edited site is positioned in the middle of the 5′-proximal half "seed" region critical for the hybridization of miRNAs to targets. We provide evidence that the edited miR-376 RNA silences specifically a different set of genes. Repression of phosphoribosyl pyrophosphate synthetase 1, a target of the edited miR-376 RNA and an enzyme involved in the uric-acid synthesis pathway, contributes to tight and tissue-specific regulation of uric-acid levels, revealing a previously unknown role for RNA editing in miRNAmediated gene silencing.Many developmental and cellular processes are regulated by microRNA (miRNA)-mediated RNA interference (RNAi) (1-4). After incorporation into the RNA-induced silencing complex, miRNAs guide the RNAi machinery to their target genes by forming RNA duplexes, resulting in sequence-specific mRNA degradation or translational repression (1,2,4). The generation of mature miRNAs requires the processing of primary transcripts (pri-miRNAs) (5), and A → I RNA editing occurs to certain pri-miRNAs (6-8).Human chromosome 14 and syntenic regions of the distal end of mouse chromosome 12 harbor the miR-376 cluster of miRNA genes (9). The six human miR-376 RNAs (miR-376a2, -376b, -368, -B1, and -B2) (Fig. 1A) and three mouse miR-376a-c RNAs ( fig. S1A) have highly similar sequences ( fig. S2). Expression of miR-376 RNAs is detected in the placenta, developing embryos, and adult tissues (9,10).All of the miR-376 RNA cluster members are transcribed into a long primary transcript encompassing the entire region and (except human miR-B1) undergo extensive and * To whom correspondence should be addressed. ykawahara@wistar.org (Y.K.); kazuko@wistar.org (K.N.). † These authors contributed equally to this work. simultaneous A → I editing at one or both of two specific sites (+4 and +44) in select human and mouse tissues and specific subregions of the brain ( Fig. 2 and table S1) (11). The +4 site of some pri-miR-376 cluster genes (e.g., human -376b and -368) is genomically encoded as G and thus not subject to A → I editing (Fig. 1A). Certain miR-376 members, such as primiR-376a2, -376b, and -368, are nearly 100% edited at the +44 site in the human cortex and medulla (Figs. 1B and 2 and table S1), whereas no editing was detected in other tissues (e.g., the +4 site of human pri-miR-376a1 in liver and the +44 site of mouse pri-miR-376a in all tissues). In select members of the cluster, substantial editing (∼20 to 55%) occurs at the −1 site, and infrequent editing occurs at several additional sites (table S1). In contrast, no editing was detected in human pri-miR-654 and mouse pri-miR-300. Although these two pri-miRNAs are located within the miR-376 cluster, t...
SUMMARY Adenosine deaminases acting on RNA (ADARs) are involved in RNA editing that converts adenosine residues to inosine specifically in double-stranded RNAs. In this study, we investigated the interaction of the RNA editing mechanism with the RNA interference (RNAi) machinery and found that ADAR1 forms a complex with Dicer through direct protein-protein interaction. Most importantly, ADAR1 increases the maximum rate (Vmax) of pre-microRNA (miRNA) cleavage by Dicer and facilitates loading of miRNA onto RNA-induced silencing complexes, identifying a new role of ADAR1 in miRNA processing and RNAi mechanisms. ADAR1 differentiates its functions in RNA editing and RNAi by formation of either ADAR1/ADAR1 homodimer or Dicer/ADAR1 heterodimer complexes, respectively. As expected, expression of miRNAs is globally inhibited in ADAR1−/− mouse embryos, which in turn alters expression of their target genes and might contribute to their embryonic lethal phenotype.
Primary transcripts of certain microRNA (miRNA) genes (pri-miRNAs) are subject to RNA editing that converts adenosine to inosine (A→I RNA editing). However, the frequency of the pri-miRNA editing and the fate of edited pri-miRNAs remain largely to be determined. Examination of already known pri-miRNA editing sites indicated that adenosine residues of the UAG triplet sequence might be edited more frequently. In the present study, therefore, we conducted a large-scale survey of human pri-miRNAs containing the UAG triplet sequence. By direct sequencing of RT–PCR products corresponding to pri-miRNAs, we examined 209 pri-miRNAs and identified 43 UAG and also 43 non-UAG editing sites in 47 pri-miRNAs, which were highly edited in human brain. In vitro miRNA processing assay using recombinant Drosha-DGCR8 and Dicer-TRBP (the human immuno deficiency virus transactivating response RNA-binding protein) complexes revealed that a majority of pri-miRNA editing is likely to interfere with the miRNA processing steps. In addition, four new edited miRNAs with altered seed sequences were identified by targeted cloning and sequencing of the miRNAs that would be processed from edited pri-miRNAs. Our studies predict that ∼16% of human pri-miRNAs are subject to A→I editing and, thus, miRNA editing could have a large impact on the miRNA-mediated gene silencing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.