dChitin, a major component of fungal cell walls and invertebrate cuticles, is an exceedingly abundant polysaccharide, ranking next to cellulose. Industrial demand for chitin and its degradation products as raw materials for fine chemical products is increasing. A bacterium with high chitin-decomposing activity, Paenibacillus sp. strain FPU-7, was isolated from soil by using a screening medium containing ␣-chitin powder. Although FPU-7 secreted several extracellular chitinases and thoroughly digested the powder, the extracellular fluid alone broke them down incompletely. Based on expression cloning and phylogenetic analysis, at least seven family 18 chitinase genes were found in the FPU-7 genome. Interestingly, the product of only one gene (chiW) was identified as possessing three S-layer homology (SLH) domains and two glycosyl hydrolase family 18 catalytic domains. Since SLH domains are known to function as anchors to the Gram-positive bacterial cell surface, ChiW was suggested to be a novel multimodular surface-expressed enzyme and to play an important role in the complete degradation of chitin. Indeed, the ChiW protein was localized on the cell surface. Each of the seven chitinase genes (chiA to chiF and chiW) was cloned and expressed in Escherichia coli cells for biochemical characterization of their products. In particular, ChiE and ChiW showed high activity for insoluble chitin. The high chitinolytic activity of strain FPU-7 and the chitinases may be useful for environmentally friendly processing of chitin in the manufacture of food and/or medicine.
Cells of "Paenibacillus fukuinensis" D2 produced chitosanase into surrounding medium, in the presence of colloidal chitosan or glucosamine. The gene of this enzyme was cloned, sequenced, and subjected to site-directed mutation and deletion analyses. The nucleotide sequence indicated that the chitosanase was composed of 797 amino acids and its molecular weight was 85,610. Unlike conventional family 46 chitosanases, the enzyme has family 8 glycosyl hydrolase catalytic domain, at the amino-terminal side, and discoidin domain at the carboxyl-terminal region. Expression of the cloned gene in Escherichia coli revealed -1,4-glucanase function, besides chitosanase activity. Analyses by zymography and immunoblotting suggested that the active enzyme was, after removal of signal peptide, produced from inactive 81-kDa form by proteolysis at the carboxyl-terminal region. Replacements of Glu 115 and Asp 176 , highly conserved residues in the family 8 glycosylase region, with Gln and Asn caused simultaneous loss of chitosanase and glucanase activities, suggesting that these residues formed part of the catalytic site. Truncation experiments demonstrated indispensability of an amino-terminal region spanning 425 residues adjacent to the signal peptide.
Paenibacillus sp. strain FPU-7 produces several different chitinases and effectively hydrolyzes robust chitin. Among the P. FPU-7 chitinases, ChiW, a novel monomeric chitinase with a molecular mass of 150 kDa, is expressed as a cell surface molecule. Here, we report that active ChiW lacking the anchoring domains in the N-terminus was successfully overproduced in Escherichia coli and purified to homogeneity. The two catalytic domains at the C-terminal region were classified as typical glycoside hydrolase family 18 chitinases, whereas the N-terminal region showed no sequence similarity to other known proteins. The vacuum-ultraviolet circular dichroism spectrum of the enzyme strongly suggested the presence of a β-stranded-rich structure in the N-terminus. Its biochemical properties were also characterized. Various insoluble chitins were hydrolyzed to N,N’-diacetyl-D-chitobiose as the final product. Based on amino acid sequence similarities and site-directed mutagenesis, Glu691 and Glu1177 in the two GH-18 domains were identified as catalytic residues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.