We study the spectral properties of Schrödinger operators on perturbed lattices. We shall prove the non-existence or the discreteness of embedded eigenvalues, the limiting absorption principle for the resolvent, construct a spectral representation, and define the S-matrix. Our theory covers the square, triangular, diamond, Kagome lattices, as well as the ladder, the graphite and the subdivision of square lattice.
An analogue of Rellich's theorem is proved for discrete Laplacian on square lattice, and applied to show unique continuation property on certain domains as well as non-existence of embedded eigenvalues for discrete Schrödinger operators.2000 Mathematics Subject Classification. Primary 81U40, Secondary 47A40.
We study the spectral analysis and the scattering theory for time evolution operators of position-dependent quantum walks. Our main purpose of this paper is construction of generalized eigenfunctions of the time evolution operator. Roughly speaking, the generalized eigenfunctions are not square summable but belong to ℓ ∞ -space on Z. Moreover, we derive a characterization of the set of generalized eigenfunctions in view of the time-harmonic scattering theory. Thus we show that the S-matrix associated with the quantum walk appears in the singularity expansion of generalized eigenfunctions.
We study the inverse scattering for Schrödinger operators on locally perturbed periodic lattices. We show that the associated scattering matrix is equivalent to the Dirichlet-to-Neumann map for a boundary value problem on a finite part of the graph, and reconstruct scalar potentials as well as the graph structure from the knowledge of the S-matrix. In particular, we give a procedure for probing defects in hexagonal lattices (graphene).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.