A taxonomical study of the Aspergillus was made centering on 403 strains of koji mold, with some other molds as reference. Morphological, physiological, and cultural characters were compared, and 20 mycological characters of each strain were submitted to component analysis by a computer, and the following characters were selected as the most significant key for taxonomical differentiation : Seriation of sterigmata, roughness of conidial walls, color of old cultures, diameter of conidia, and pink coloration of conidia in the anisaldehyde medium.In addition, the strains RIB 430 and Thom No. 113 were found to be the original isolate of AHLBURG and CoHN ; the strain Thom No. 108 was proved to be A. oryzae, and A. sojae SAKAGUCHI et YAMADA was definitely discriminated from A. parasiticus SPEARE.As a result, all the strains were proved to belong to two different clusters by the computer analysis, one being the A. oryzae group and the other, A. flavus group. The koji molds were placed in A. oryzae group including A. sojae SAKAGUCHI et YAMADA, A. tamarii KITA, A. oryzae (Ahlburg) CoHN, A. oryzae var. viride, var. nov., and A. oryzae var. brunneus, var. nov., and the strains other than koji mold were placed in A. flavus group including A. flavus LINK, A. paras:t>cus SPEARE, and A. toxicarius, sp. nov.
Similar to other animal groups, human crowds exhibit various collective patterns that emerge from self-organization. Recent studies have emphasized that individuals anticipate their neighbours' motions to seek their paths in dynamical pedestrian flow. This path-seeking behaviour results in deviation of pedestrians from their desired directions (i.e. the direct path to their destination). However, the strategies that individuals adopt for the behaviour and how the deviation of individual movements impact the emergent organization are poorly understood. We here show that the path-seeking behaviour is performed through a scale-free movement strategy called a Lévy walk, which might facilitate transition to the group-level behaviour. In an experiment of lane formation, a striking example of self-organized patterning in human crowds, we observed how flows of oppositely moving pedestrians spontaneously separate into several unidirectional lanes. We found that before (but not after) lane formation, pedestrians deviate from the desired direction by Lévy walk process, which is considered optimal when searching unpredictably distributed resources. Pedestrians balance a trade-off between seeking their direct paths and reaching their goals as quickly as possible; they may achieve their optimal paths through Lévy walk process, facilitating the emergent lane formation.
Collective behaviour is known to be the result of diverse dynamics and is sometimes likened to a living system. Although many studies have revealed the dynamics of various collective behaviours, their main focus was on the information process inside the collective, not on the whole system itself. For example, the qualitative difference between two elements and three elements as a system has rarely been investigated. Tononi et al. have proposed Integrated Information Theory (IIT) to measure the degree of consciousness Φ. IIT postulates that the amount of information loss caused by certain partitions is equivalent to the degree of information integration in the system. This measure is not only useful for estimating the degree of consciousness but can also be applied to more general network systems. Here we applied IIT (in particular, IIT 3.0 using PyPhi) to analyse real fish schools (Plecoglossus altivelis). Our hypothesis in this study is a very simple one: a living system evolves to raise its Φ value. If we accept this hypothesis, IIT reveals the existence of continuous and discontinuous properties as group size varies. For example, leadership in the fish school emerged for a school size of four or above; but not below three. Furthermore, this transition was not observed by measuring mutual information or in a simple Boids model. This result suggests that integrated information Φ can reveal some inherent properties which cannot be observed using other measures. We also discuss how the fish recognition of the figure-ground relation, that is, what determines the relevant ON and OFF states, may reveal various optimal paths for obtaining the functional evolution of collective behaviour.
Human crowds provide paradigmatic examples of collective behavior emerging through self-organization. Understanding their dynamics is crucial to help manage mass events and daily pedestrian transportation. Although recent findings emphasized that pedestrians’ interactions are fundamentally anticipatory in nature, whether and how individual anticipation functionally benefits the group is not well understood. Here, we show the link between individual anticipation and emergent pattern formation through our experiments of lane formation, where unidirectional lanes are spontaneously formed in bidirectional pedestrian flows. Manipulating the anticipatory abilities of some of the pedestrians by distracting them visually delayed the collective pattern formation. Moreover, both the distracted pedestrians and the nondistracted ones had difficulties avoiding collisions while navigating. These results imply that avoidance maneuvers are normally a cooperative process and that mutual anticipation between pedestrians facilitates efficient pattern formation. Our findings may influence various fields, including traffic management, decision-making research, and swarm dynamics.
Recent experimental and observational data have revealed that the internal structures of collective animal groups are not fixed in time. Rather, individuals can produce noise continuously within their group. These individuals’ movements on the inside of the group, which appear to collapse the global order and information transfer, can enable interactions with various neighbors. In this study, we show that noise generated inherently in a school of ayus (Plecoglossus altivelis) is characterized by various power-law behaviors. First, we show that individual fish move faster than Brownian walkers with respect to the center of the mass of the school as a super-diffusive behavior, as seen in starling flocks. Second, we assess neighbor shuffling by measuring the duration of pair-wise contact and find that this distribution obeys the power law. Finally, we show that an individual’s movement in the center of a mass reference frame displays a Lévy walk pattern. Our findings suggest that inherent noise (i.e., movements and changes in the relations between neighbors in a directed group) is dynamically self-organized in both time and space. In particular, Lévy walk in schools can be regarded as a well-balanced movement to facilitate dynamic collective motion and information transfer throughout the group.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.