The minimal gene set essential for life has long been sought. We report the 860-kb genome of the obligate intracellular plant pathogen phytoplasma (Candidatus Phytoplasma asteris, OY strain). The phytoplasma genome encodes even fewer metabolic functions than do mycoplasma genomes. It lacks the pentose phosphate cycle and, more unexpectedly, ATP-synthase subunits, which are thought to be essential for life. This may be the result of reductive evolution as a consequence of life as an intracellular parasite in a nutrient-rich environment.
Many insect-transmissible pathogens are transmitted by specific insect species and not by others, even if they are closely related. The molecular mechanisms underlying such strict pathogen-insect specificity are poorly understood. Candidatus Phytoplasma asteris, OY strain, line W (OY), is a phytopathogenic bacterium transmitted from plant to plant by sap-feeding insect vectors (leafhoppers). Our study focused on an abundant cell-surface membrane protein of the phytoplasma named antigenic membrane protein (Amp), which is not homologous with any reported functional protein.Immunofluorescence microscopy of the phytoplasma-infected insect showed that OY phytoplasma was localized to the microfilaments of the visceral smooth muscle surrounding the insect's intestinal tract. The affinity column assay showed that Amp forms a complex with three insect proteins: actin, myosin heavy chain, and myosin light chain. Amp-microfilament complexes were detected in all OY-transmitting leafhopper species, but not in the non-OY-transmitting leafhoppers, suggesting that the formation of the Amp-microfilament complex is correlated with the phytoplasma-transmitting capability of leafhoppers. Although several studies have reported interactions between pathogens and mammalian microfilaments, this is an example of host-specific interactions between a bacterial surface protein and a host microfilament in insect cells. Our data also suggest that the utilization of a host microfilament may be a universal system for pathogenic bacteria infecting mammals or insects.host determination ͉ microbiology ͉ pathogen-host interaction ͉ phytoplasma
Phylogenetic relationships of five jujube witches'-broom (JWB) phytoplasma isolates from four different districts, and other phytoplasmas, were investigated by 16S rDNA PCR amplification and sequence analysis. The 16S rDNA sequences of any pair of the five isolates of JWB phytoplasmas were >99?5 % similar. The JWB phytoplasma 16S rDNA sequences were most closely related to that of the elm yellows (EY) phytoplasma in 16S-group VIII. Phylogenetic analysis of the 16S rDNA sequences from the JWB phytoplasma isolates, together with sequences from most of the phytoplasmas archived in GenBank, produced a tree in which the JWB isolates clustered as a discrete subgroup. The uniqueness of the JWB phytoplasma appears to be correlated with a specific insect vector (Hishimonus sellatus) and the host plant (Zizyphus jujuba), or with a specific geographical distribution. The unique properties of the JWB phytoplasma sequences clearly indicate that it represents a novel taxon, 'Candidatus Phytoplasma ziziphi'.
A gene that encodes a putative SecE protein, which is a component of the Sec protein-translocation system, was cloned from the onion yellows phytoplasma (OY). The identification of this gene and the previously reported genes encoding SecA and SecY provides evidence that the Sec system exists in phytoplasma. In addition, a gene encoding an antigenic membrane protein (Amp) (a type of immunodominant membrane protein) of OY was cloned and sequenced. The OY amp gene consisted of 702 nt encoding a protein of 233 aa which was highly similar to Amp of aster yellows phytoplasma (AY). Part of OY Amp was overexpressed in Escherichia coli, purified, and used to raise an anti-Amp polyclonal antibody. The anti-Amp antibody reacted specifically with an OY-infected plant extract in Western blot analysis and was therefore useful for the detection of OY as well as Amp. Amp has a conserved protein motif that is known to be exported by the Sec system of E. coli. A partial OY Amp protein expressed in E. coli was localized in the periplasm as a shorter, putatively processed form of the protein. It had probably been exported from the cytoplasm to the periplasm through the Sec system. Moreover, OY Amp protein expressed in OY and detected in OY-infected plants was apparently also processed. Because phytoplasmas cannot be cultured or transformed, little information is available regarding their protein secretion systems. This study suggests that the Sec system operates in this phytoplasma to export OY Amp.
Two lines of onion yellows phytoplasma producing milder symptoms were isolated from the original line (OY-W). One has an additional characteristic, non-insect-transmissibility (OY-NIM), compared with the other (OY-M). OY-M was established after maintaining OY-W for 11 years on a plant host (Chrysanthemum coronarium) with an insect vector (Macrosteles striifrons), and OY-NIM was isolated after subsequent maintenance of OY-M in plants by periodic grafting. Polymerase chain analysis suggested that OY-NIM cannot traverse the gut or survive in the hemolymph of the leafhopper. OY-W results in witches'-broom formation and stunted growth in the host plant. In contrast, OY-M and OY-NIM do not cause stunting in the host plant, although they result in witches'-broom. Histopathological analysis of these lines revealed that the hyperplastic phloem tissue and severe phloem necrosis seen in OY-W did not exist in OY-M and OY-NIM. This was attributed to a reduction in the population of phytoplasma in tissues in both OY-M- and OY-NIM-infected plants. The results suggest that the cause of stunting and phloem hyperplasia may be genetically different from the cause of witches'-broom. Pulsed field gel electrophoresis analysis showed that OY-M had a smaller genome size ( approximately 870 kbp) than OY-W ( approximately 1,000 kbp). Thus, some of the OY-W genes responsible for pathogenicity may not be present in OY-M.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.